Synthesis and catalytic properties of nitrogen-containing carbon nanotubes
DOI: https://doi.org/10.15407/hftp12.02.135
Abstract
Nitrogen-containing carbon nanotubes (CNTs) were synthesized by the CVD method on oxide catalysts of Al-Fe-Mo-O by adding acetonitrile or ethylenediamine to the carbon source (propylene), or completely replacing it, as well as impregnating the original CNTs with urea, followed by heat treatment. The structure of nitrogen-containing CNTs (N-CNT) was characterized by the method of Raman scattering, transmission electron microscopy (TEM), differential thermal and gravimetric analysis (DTA, DTG) and X-ray photoelectron spectroscopy (XPS). The influence of the synthesis method on the number and chemical state of nitrogen heteroatoms in the structure of the carbon matrix is found. According to the TEM, nitrogen-containing CNTs have a characteristic bamboo-like structure, which is less perfect compared to the structure of the original CNTs: the characteristic Raman bands (G and D) are shifted to higher frequencies, their half-width and band D intensity increase relative to G. This is also manifested in the lower thermal stability of nitrogen-containing CNTs. According to the XPS, the direct synthesis of nitrogen-containing CNTs increases the total content of nitrogen atoms and the proportion of pyrrolic and quaternary nitrogen against the background of a significant decrease in the amount of pyridinic form. This can be explained by the fact that nitrogen is evenly distributed throughout the carbon matrix of CNTs, and during nitriding of CNTs with urea, nitrogen is included mainly in the surface layers and defects, because the pyridine form is characteristic of the edge location of the nitrogen atom in the graphene plane.The catalytic effect of multilayer nitrogen-containing carbon nanotubes (N-CNT) on the kinetics of decomposition of hydrogen peroxide in aqueous solutions at different pH values is considered. It is concluded that the method of direct synthesis of nitrogen-containing CNTs allows to obtain more catalytically active carbon nanotubes containing more nitrogen, mainly pyrrolic and quaternary type. It has been found that regardless of the method of synthesis, the maximum catalytic activity in the decomposition of hydrogen peroxide is observed at pH 7.
Keywords
References
Brzhezinskaya M.M., Baitinger E.M., Belenkov E.A., Svirskaya L.M. Defect electron states in carbon nanotubes and graphite from the NEXAFS spectroscopy data. 2013. Phys. Solid State. 55(4): 850. https://doi.org/10.1134/S1063783413040057
Dang Sheng Su, Perathoner S., Centi G. Nanocarbons for the development of advanced catalysts. 2013. Chem. Rev. 113(8): 5782. https://doi.org/10.1021/cr300367d
Voitko K., Tóth A., Demianenko E., Dobos G., Berke B., Bakalinska O., Grebenyuk A., Tombácz E., Kuts V., Tarasenko Yu., Kartel M., László K. Catalytic performance of carbon nanotubes in H2O2 decomposition: Experimental and quantum chemical study. J. Colloid Interface Sci. 2015. 437: 283. https://doi.org/10.1016/j.jcis.2014.09.045
Huang Z., Liao Z., Yang W., Zhou H., Fu C., Gong Y., Chen L., Kuang Y. Different types of nitrogen species in nitrogen-doped carbon material: The formation mechanism and catalytic role on oxygen reduction reaction. 2017. Electrochim. Acta. 245: 957. https://doi.org/10.1016/j.electacta.2017.06.026
Maiyalagan T., Maheswari S., Saji V.S. Electrocatalysis for Low Temperature Fuel Cells: Fundamentals and Recent Trends. (Wiley‐VCH Verlag GmbH & Co., 2017). https://doi.org/10.1002/9783527803873
Zhuravsky S.V., Kartel M.T., Tarasenko Yu.O., Villar-Rodil S., Dobos G., Toth A., Tuscon J., Laszlo K. N-containing carbons from styrene-divinylbenzene copolymer by urea treatment. Appl. Surf. Sci. 2012. 258(7): 2410. https://doi.org/10.1016/j.apsusc.2011.10.062
Ratso S., Kruusenberg I., Joost U., Saar R. Enhanced oxygen reduction reaction activity of nitrogen-doped graphene/multi-walled carbon nanotube catalysts in alkaline media. Int. J. Hydrogen Energy. 2016. 41(47): 22510. https://doi.org/10.1016/j.ijhydene.2016.02.021
Wei Q., Tong X., Zhang G., Qiao J., Gong Q., Sun Sh. Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions. Catalysts. 2015. 5(3): 1574. https://doi.org/10.3390/catal5031574
Arrigo R., Hävecker M., Wrabetz S., Blume R., Lerch M., McGregor J., Parrott E.P.J., Zeitler J.A., Gladden L.F., Knop-Gericke A., Schlögl R., Su D.Sh. Tuning the acid/base properties of nanocarbons by functionalization via amination. J. Amer. Chem. Soc. 2010. 132(28): 9616. https://doi.org/10.1021/ja910169v
Wepasnick K.A., Smith B.A., Bitter J.L., Fairbrother D.H. Chemical and structural characterization of carbon nanotube surfaces. Anal. Bioanal. Chem. 2010. 396(3): 1003. https://doi.org/10.1007/s00216-009-3332-5
Lin He., Weniger F., Neumann H., Beller M. Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: catalysis beyond electrochemistry. Angew. Chem. 2016. 55(41): 12582. https://doi.org/10.1002/anie.201603198
Van Dommele S., Romero-Izquierdo A., Brydson R., Jong K.P.De, Bitter J.H., van Dommele S., Romero-Izquirdo A., Brydson R., de Jong K.P., Bitter J.H. Tuning nitrogen functionalities in catalytically grown nitrogen-containing carbon nanotubes. Carbon. 2008. 46(1): 138. https://doi.org/10.1016/j.carbon.2007.10.034
Melezhik A.V., Sementsov Yu.I., Yanchenko V.V. Synthesis of fine carbon nanotubes on coprecipitated metal oxide catalysts. Russ. J. Appl. Chem. 2005. 78(6): 917. https://doi.org/10.1007/s11167-005-0420-y
Sementsov Yu., Cherniuk O., Dovbeshko G., Zhuravskyi S., Makhno S., Bo Wang, Kartel M. Glass-reinforced plastic filled by multiwall carbon nanotubes and their modified forms. J. Mater. Sci. Chem. Eng. 2019. 7(7): 26. https://doi.org/10.4236/msce.2019.77004
Sementsov Yu.I. Formation of structure and properties of sp2-carbon nanomaterials and functional composites with their participation. (Kyiv: Interservis, 2019). [in Ukrainian].
Podyacheva O.Yu., Cherepanova S.V., Romanenko A.I., Kibisa L.S., Svintsitskiy D.A., Boronin A.I., Stonkus O.A., Suboch A.N., Puzynin A.V., Ismagilo Z.R. Nitrogen doped carbon nanotubes and nanofibers: Composition, structure, electrical conductivity and capacity properties. Carbon. 2017. 122: 475. https://doi.org/10.1016/j.carbon.2017.06.094
Xu E., Wei J., Wang K., Li Zh., Gui X., Jia Y., Zhu H., Wu D. Doped carbon nanotube array with a gradient of nitrogen concentration. Carbon. 2010. 48(11): 3097. https://doi.org/10.1016/j.carbon.2010.04.046
Dommele S., Romero-Izquirdo A., Brydson R., De Jong K.P., Bitter J.H. Tuning nitrogen functionalities in catalytically grown nitrogen-containing carbon nanotubes. Carbon. 2008. 46(1): 138. https://doi.org/10.1016/j.carbon.2007.10.034
Voitko K.V., Haliarnyk D.M., Bakalinska O.M., Kartel M.T. Factors determining the catalytic activity of multi-walled carbon nanotubes in the decomposition of diacyl peroxides in non-aqueous media (DPDec). Catal. Lett. 2017. 147(8): 1966. https://doi.org/10.1007/s10562-017-2110-9
DOI: https://doi.org/10.15407/hftp12.02.135
Copyright (©) 2021 Yu. I. Sementsov, O. A. Cherniuk, S. V. Zhuravskyi, Wang Bo, K. V. Voitko, O. M. Bakalinska, M. T. Kartel
This work is licensed under a Creative Commons Attribution 4.0 International License.