Chemistry, Physics and Technology of Surface, 2022, 13 (1), 82-93.

Role of surface chemical design in sorption specificity of functionalized silica gels



DOI: https://doi.org/10.15407/hftp13.01.082

L. A. Belyakova, D. Yu. Lyashenko

Abstract


One of the most important tasks of environmental chemistry is the development of effective methods for the extraction and chemical analysis of highly toxic oxyanions, such as nitrate, phosphate and arsenate. They enter the environment, raw materials and commercial products with waste from chemical and metallurgical industries. This problem can be solved by synthesizing selective materials that absorb anions due to the complementarity of their active centers and ions.

The aim of this work is a directed chemical design of silica surface for the construction of sorption active centers  with a high affinity for nitrate, orthophosphate, and orthoarsenate anions.

Chemical design of β-cyclodextrin-containing supramolecular structures on the surface of granular mesoporous silica gel to obtain sorbents of highly toxic oxyanions was carried out.

The structure and surface chemistry of the initial and functionalized silica gels were characterized by means of IR spectroscopy, spectrophotometry, thermogravimetric and chemical analysis, pH metry, low-temperature adsorption-desorption of nitrogen and sorption techniques. The sorption of nitrate, orthophosphate, and orthoarsenate anions from aqueous one- and multicomponent salt solutions was studied as dependent on the time and ion concentration, as well as in the cyclic sorption-desorption mode.

The results obtained are interpreted using kinetic models of pseudo-first and pseudo-second order processes and the equilibrium adsorption models of Langmuir and Freundlich. The main characteristics of the specificity and selectivity of the obtained β-cyclodextrin silica gel were calculated. Conclusions are drawn regarding the possibility of using functionalized silica gel for the sorption of oxyanions from water and aqueous solutions, their concentrating, chromatographic separation, and chemical analysis.


Keywords


chemical surface design; host‒guest inclusion complexes; silica gel; β-cyclodextrin; oxyanion sorption; , low-temperature nitrogen adsorption-desorption; , IR spectroscopy; , spectrophotometry; derivatography; pH metry

Full Text:

PDF (Українська)

References


Chen F., Wu Q., Lü Q., Xu Y., Yu Y. Synthesis and characterization of bifunctional mesoporous silica adsorbent for simultaneous removal of lead and nitrate ions. Sep. Purif. Technol. 2015. 151: 225. https://doi.org/10.1016/j.seppur.2015.07.024

Karthikeyan P., Meenakshi S. Fabrication of hybrid chitosan encapsulated magnetic-kaolin beads for adsorption of phosphate and nitrate ions from aqueous solutions. Int. J. Biol. Macromol. 2021. 168: 750. https://doi.org/10.1016/j.ijbiomac.2020.11.132

Tan G., Mao Y., Wang H., Xu N. A comparative study of arsenic (V), tetracycline and nitrate ions adsorption onto magnetic biochars and activated carbon. Chem. Eng. Res. Des. 2020. 159: 582. https://doi.org/10.1016/j.cherd.2020.05.011

Loganathan P., Vigneswaran S., Kandasamy J. Enhanced removal of nitrate from water using surface modification of adsorbents - A review. J. Environ. Manage. 2013. 131: 363. https://doi.org/10.1016/j.jenvman.2013.09.034

Bhatnagar A., Sillanpää M. A review of emerging adsorbents for nitrate removal from water. Chem. Eng. J. 2011. 168(2): 493. https://doi.org/10.1016/j.cej.2011.01.103

Kang J.-K., Lee S.-C., Kim S.-B. Synthesis of quaternary ammonium-functionalized silica gel through grafting of dimethyl dodecyl [3-(trimethoxysilyl)propyl]ammonium chloride for nitrate removal in batch and column studies. J. Taiwan Inst. Chem. Eng. 2019. 102: 153. https://doi.org/10.1016/j.jtice.2019.05.019

Banu H.T., Meenakshi S. One pot synthesis of chitosan grafted quaternized resin for the removal of nitrate and phosphate from aqueous solution. Int. J. Biol. Macromol. 2017. 104: 1517. https://doi.org/10.1016/j.ijbiomac.2017.03.043

Karthikeyan P., Meenakshi S. Removal of toxic ions from aqueous solutions by surfactant-assisted biopolymeric hybrid membrane: Synthesis, characterization and toxic ions removal performance. J. Environ. Chem. Ing. 2020. 8: 103717. https://doi.org/10.1016/j.jece.2020.103717

Aminia M., Amini Z.K., Erfanifar E. Nitrate (NO3−) and phosphate (PO43−) removal from aqueous solutions by microalgae Dunaliella salina. Biocatal. Agric. Biotechnol. 2019. 19: 101097. https://doi.org/10.1016/j.bcab.2019.101097

Bhardwaj D., Sharma M., Sharma P., Tomar R. Synthesis and surfactant modification of clinoptilolite and montmorillonite for the removal of nitrate and preparation of slow release nitrogen fertilizer. J. Hazard. Mater. 2012. 227-228: 292. https://doi.org/10.1016/j.jhazmat.2012.05.058

Karthikeyan P., Meenakshi S. In-situ fabrication of cerium incorporated chitosan-β-cyclodextrin microspheres as an effective adsorbent for toxic anions removal. Environ. Nanotechnol. Monit. Manage. 2019. 12: 100272. https://doi.org/10.1016/j.enmm.2019.100272

Hamoudi S., Belkacemi K. Adsorption of nitrate and phosphate ions from aqueous solutions using organically-functionalized silica materials: Kinetic modeling. Fuel. 2013. 110: 107. https://doi.org/10.1016/j.fuel.2012.09.066

Zhang J., Shen Z., Shan W., Mei Z., Wang W. Adsorption behavior of phosphate on lanthanum(III)-coordinated diamino-functionalized 3D hybrid mesoporous silicates materia. J. Hazard. Mater. 2011. 186(1): 76. https://doi.org/10.1016/j.jhazmat.2010.10.076

De Sousa A.F., Braga T.P., Gomes E.C.C., Valentini A., Longhinotti E. Adsorption of phosphate using mesoporous spheres containing iron and aluminum oxide. Chem. Eng. J. 2012. 210: 143. https://doi.org/10.1016/j.cej.2012.08.080

Halajnia A., Oustan S., Najafi N., Khataee A.R., Lakzian A. Adsorption-desorption characteristics of nitrate, phosphate and sulfate on Mg-Al layered double hydroxide. App. Clay Sci. 2013. 80-81: 305. https://doi.org/10.1016/j.clay.2013.05.002

Karthikeyan P., Elanchezhiyan S.S.D., Preethi J., Talukdar K., Meenakshi S., Park C.M. Two-dimensional (2D) Ti3C2TxMXene nanosheets with superior adsorption behavior for phosphate and nitrate ions from the aqueous environment. Ceram. Int. 2020. 47(1): 732. https://doi.org/10.1016/j.ceramint.2020.08.183

Saha S., Sarkar P. Arsenic remediation from drinking water by synthesized nano-alumina dispersed in chitosan-grafted polyacrylamide. J. Hazard. Mater. 2012. 227-228: 68. https://doi.org/10.1016/j.jhazmat.2012.05.001

Bilici Baskan M., Pala A. Removal of arsenic from drinking water using modified natural zeolite. Desalination. 2011. 281: 396. https://doi.org/10.1016/j.desal.2011.08.015

Xu W., Wang J., Wang L., Sheng G., Liu J., Yu H., Huang X.-J. Enhanced arsenic removal from water by hierarchically porous CeO2-ZrO2 nanospheres: Role of surface- and structure-dependent properties. J. Hazard. Mater. 2013. 260: 498. https://doi.org/10.1016/j.jhazmat.2013.06.010

Sanaei L., Tahmasebpoor M. Physical appearance and arsenate removal efficiency of Fe(III)-modified clinoptilolite beads affected by alginate-wet-granulation process parameters. Mater. Chem. Phys. 2020. 259: 124009. https://doi.org/10.1016/j.matchemphys.2020.124009

Jordan Y.C., Ghulam A., Hartling S. Traits of surface water pollution under climate and use changes: A remote sensing and hydrological modeling approach. Earth Sci. Rev. 2014. 128: 181. https://doi.org/10.1016/j.earscirev.2013.11.005

Fotsing P.N., Bouazizi N., Woumfo E.D., Mofadde N., Derf F.L., Vieillard J. Investigation of chromate and nitrate removal by adsorption at the surface of an amine-modified cocoa shell adsorbent. J. Environ. Chem. Eng. 2021. 9(1): 104618. https://doi.org/10.1016/j.jece.2020.104618

Crini G., Morcellet M. Synthesis and applications of adsorbents containing cyclodextrins. J. Sep. Sci. 2002. 25(13): 789. https://doi.org/10.1002/1615-9314(20020901)25:13<789::AID-JSSC789>3.0.CO;2-J

Velu M., Balasubramanian B., Velmurugan P., Kamyab H., Ravi A.V., Chelliapan S., Lee C.T., Palaniyappan J. Fabrication of nanocomposites mediated from aluminium nanoparticles/ Moringa oleifera gum activated carbon for effective photocatalytic removal of nitrate and phosphate in aqueous solution. J. Cleaner Prod. 2021. 281: 124553. https://doi.org/10.1016/j.jclepro.2020.124553

Jiang H., Chen P., Luo S., Tu X., Cao Q., Shu M. Synthesis of novel nanocomposite Fe3O4/ZrO2/chitosan and its application for removal of nitrate and phosphate. Appl. Surf. Sci. 2013. 284: 942. https://doi.org/10.1016/j.apsusc.2013.04.013

Tuna A.Ö.A., Özdemir E., Şimşek E.B., Beker U. Removal of As(V) from aqueous solution by activated carbon-based hybrid adsorbents: Impact of experimental conditions. Chem. Eng. J. 2013. 223: 116. https://doi.org/10.1016/j.cej.2013.02.096

Taleb K., Markovski J., Veličković Z., Rusmirović J., Rančić M., Pavlović V., Marinković A. Arsenic removal by magnetite-loaded amino modified nano/microcellulose adsorbents: effect of functionalization and media size. Arabian J. Chem. 2016. 12(8): 4675. https://doi.org/10.1016/j.arabjc.2016.08.006

Lan J., Sun Y., Guo L., Du Y., Du D., Zhang T.C., Ye H. Highly efficient removal of As(V) with modified electrolytic manganese residues (M-EMRs) as a novel adsorbent. J. Alloys Compd. 2019. 811: 151973. https://doi.org/10.1016/j.jallcom.2019.151973

Gupta S.S., Bhattacharyya K.G. Adsorption of Ni(II) on clays. J. Colloid Interface Sci. 2006. 295: 21. https://doi.org/10.1016/j.jcis.2005.07.073

Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918. 40: 1361. https://doi.org/10.1021/ja02242a004

Freundlich H., Heller W.J. The adsorption of cis- and trans-azobenzene. J. Am. Chem. Soc. 1939. 61: 2228. https://doi.org/10.1021/ja01877a071

Marhol M. Ion Exchangers in Analytical Chemistry. Their Properties and Use in Inorganic Chemistry. (Prague: Academia, 1982).

Rao C.N.R. Ultra-Violet and Visible Spectroscopy Chemical Applications. (London: Butterworths, 1961).

Sverdlova O.V. Electronic Spectra in Organic Chemistry. (Leningrad: Khimiya, 1973). [in Russian].

Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998. 98(5): 1743. https://doi.org/10.1021/cr970022c

Slabaugh W.H., Parsons T.D. General Chemistry. (New York: John Wiley & Sons, 1966).

Gordon A.J., Ford R.A. The Chemist's Companion. A Handbook of Practical Data, Techniques, and References. (New York: John Wiley & Sons, 1972).

Belyakov V.N., Belyakova L.A., Varvarin A.M., Khora O.V., Vasilyuk S.L., Kazdobin K.A., Maltseva T.V., Kotvitskyy A.G., Danil de Namor A.F. Supramolecular structures on silica surface and their adsorptive properties. J. Colloid Interface Sci. 2005. 285(1): 18. https://doi.org/10.1016/j.jcis.2004.11.027

Shvets O.M., Belyakova L.A. Synthesis, characterization and sorption properties of silica modified with some derivatives of β-cyclodextrin. J. Hazard. Mater. 2015. 283: 643. https://doi.org/10.1016/j.jhazmat.2014.10.012

Smith A.L. Applied Infrared Spectroscopy. (New York: John Wiley and Sons, 1982).

Bellamy L.J. Advances in Infrared Group Frequencies. (London: Methuen, 1968).




DOI: https://doi.org/10.15407/hftp13.01.082

Copyright (©) 2022 L. A. Belyakova, D. Yu. Lyashenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.