Chemistry, Physics and Technology of Surface, 2022, 13 (2), 150-159.

Influence of copper iodide particles of different dispersity on the fermentation activity of yeast cells Saccharomyces cerevisiae



DOI: https://doi.org/10.15407/hftp13.02.150

H. M. Bagatskaya, R. V. Mazurenko, S. M. Makhno, P. P. Gorbyk

Abstract


The effect of different dispersity copper iodide (CuI) particles on vital activity in an aqueous yeast suspension of organisms of the species Saccharomyces cerevisiae under anaerobic conditions under endogenous metabolism was studied by differential microcalorimetry.

It has been found that an increase in the concentration of Cu+ to certain values leads to activation of the protective functions of cellular organisms, which is manifested in an increase in the energy costs of the yeast cell on the structural reorganization of the plasmolemma and possibly other membrane structures in order to counter the penetration of the bactericidal agent into the organism and its internal membrane structures. Upon reaching certain concentrations of Cu+, the yeast organism loses its original vitality, so that at its extreme values the organism completely stops its vital activity.

The equilibrium concentration of Cu+ ions in aqueous solution for copper iodide nanoparticles is significantly higher in comparison with their microparticles, which is explained by the lower work function of CuI in the solution at the solid-liquid interface due to the increase in the curvature of the surface of the nanoparticle and the change in the surface tension at the interface.


Keywords


yeast cells; microcalorimetry; fermentation; metabolism; disperse copper iodide

Full Text:

PDF (Українська)

References


1. Li J., Ma G., Liu H., Liu H. Yeast cells carrying metal nanoparticles. Mater. Chem. Phys. 2018. 207: 373. https://doi.org/10.1016/j.matchemphys.2018.01.001

2. de Alteriis E., Falanga A., Galdiero S., Guida M., Maselli V. Genotoxicity of gold nanoparticles functionalized with indolicidin towards Saccharomyces cerevisiae. ACS Appl. Bio Mater. 2019. 2(5): 2050.

3. Maurer-Jones M.A., Gunsolus I.L., Murphy C.J., Haynes C.L. Toxicity of Engineered Nanoparticles in the Environment. Anal. Chem. 2013. 85(6): 3036. https://doi.org/10.1021/ac303636s

4. Wright M.V., Matson C.W., Baker L.F., Castellon B.T., Watkins P.S., King R.S. Titanium dioxide nanoparticle exposure reduces algal biomass and alters algal assemblage composition in wastewater effluent-dominated stream mesocosms. Sci. Total Environ. 2018. 626: 357. https://doi.org/10.1016/j.scitotenv.2018.01.050

5. Tran P.A., Webster T. Selenium nanoparticles inhibit Staphylococcus aureus growth. Int. J. Nanomedicine. 2011. 6: 1553. https://doi.org/10.2147/IJN.S21729

6. Savchuk M.V., Katsev A.M., Starodub M.F. Compaction of the effect of Nb-axis nanocomposites on microorganisms. Bioresources and nature management. 2017. 9(1-2): 37. [in Ukrainian]. https://doi.org/10.31548/bio2017.01.005

7. Researchers Y., Club E., Branch L., Azad I. Toxicity Effects of SiO Nanoparticles on Green Micro Algae Dunaliella Salina. Int. J. Nanosci. Nanotechnol. 2016. 12(4): 269.

8. Bagatskaya A.N., Mazurenko R.V., Makhno S.N., Gorbyk P.P. Analysis of the mechanism of intensification of fermentation process using yeast cells in a suspension of high-dispersed oxides. Biophysics. 2014. 59(2): 276. https://doi.org/10.1134/S000635091402002X

9. Frolov U.G. Colloidal chemistry course. Surface phenomena and dispersed systems. 2nd ed. (Moscow: Chemistry, 1988). [in Russian].

10. Petryanov-Sokolov I.V., Sutugin A.G. Aerosols. (Moscow: Nauka, 1989). [in Russian].

11. Ribeiro T.P., Fernandes Ch., Melo K.V., Ferreira S.S., Lessa J.A., Franco R.W.A., Schenk G., Pereira M.D., Horn Jr A. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress. Free Radic. Biol. Med. 2015. 80(1): 67. https://doi.org/10.1016/j.freeradbiomed.2014.12.005

12. Gomesa S.I.L., Novaisa S.C., Scott-Fordsmandb J.J. Comparative Biochemistry and Physiology. Part C. (Toxicology & Pharmacology, 2012).

13. Alt V., Bechert Th., Steinrucke P., Wagener M., Seidel P., Dingeldein E., Domann E., Schnettler R. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials. 2004. 25(18): 4383. https://doi.org/10.1016/j.biomaterials.2003.10.078

14. Shionoiri N., Sato T., Fujimori Y., Nakayama T., Nemoto M., Matsunaga T., Tanaka T. Investigation of the antiviral properties of copper iodide nanoparticles against Feline calicivirus. J. Biosci. Bioeng. 2012. 113(5): 580. https://doi.org/10.1016/j.jbiosc.2011.12.006

15. Patent JP 2542488. Tetsuya S., Tsuruo N., Yoshie F. Antiviral agent. 2013.

16. Babyeva I.P., Chernov I.Y. Biology of yeast. (Moscow: Partnership of scientific publications KMK, 2004). [in Russian].

17. Berry D. Biology of yeast. (E. Arnold, 1982).

18. Brauer Ed.G. Handbook of Preparative Inorganic Chemistry. 2nd Edition. (London: Academic press, 1963).

19. Safaei-Ghomi J., Rohani S., Ziarati A. CuI Nanoparticles as a Reusable Heterogeneous Catalyst for the One-Pot Synthesis of N-Cyclohexyl-3-aryl-quinoxaline-2-amines Under Mild Conditions. J. Nanostructures. 2012. 2(1): 79.

20. Chemical Encyclopedia. In 5 vol. of A-Darzana. (Knunyants I.L. (Ed.), etc.). (Soviet Encycl., Moscow, 1988). [in Russian].

21. Guiier A. X-ray diffraction in crystals, imperfect crystals, and amorphous bodies. J. Chem. Educ. 1964. 41(5): 292. https://doi.org/10.1021/ed041p292.2

22. Calve E., Prat A. Progress in Microcalorimetry. (London: Pergamon, 1963).

23. Garkusha O.M., Makhno S.M., Bagatskaya A.N., Gorbyk P.P. Thermal effects during the immersion wetting of silica gel and the yeast cells during the formation of aqueous suspensions. Koloidn. zhurn. 2010. 72(3): 323. [in Russian]. https://doi.org/10.1134/S1061933X10030063

24. Taylor D.J., Green N.P.O., Stout G.W., Soper R. Biological Science. V. 1. 1 edition. (Cambridge: University Press., 1990).

25. Mazurenko R.V., Makhno S.N., Gunya G.M., Gorbyk P.P. Influence of the dispersion of copper iodide particles on the electrophysical properties of polychlorotrifluoroethylene based composites. Metallophysics and advanced technologies. 2016. 38(5): 647. [in Russian].

26. Bagatska G.M., Mazurenko R.V., Makhno S.M., Gorbyk P.P. Effect of disperses copper iodide on the enzymatic activity of yeast Saccharomyces cerevisiae. Him. Fiz. Tehnol. Poverhni. 2016. 7(3): 354. [in Ukrainian]. https://doi.org/10.15407/hftp07.03.354

27. Tolman R.C. The effect of droplet size on surface tension. J. Chem. Phys. 1949. 17(3): 333. https://doi.org/10.1063/1.1747247




DOI: https://doi.org/10.15407/hftp13.02.150

Copyright (©) 2022 H. M. Bagatskaya, R. V. Mazurenko, S. M. Makhno, P. P. Gorbyk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.