Chemistry, Physics and Technology of Surface, 2022, 13 (2), 179-189.

Changes in the structure and properties of graphene oxide surfaces during reduction and modification



DOI: https://doi.org/10.15407/hftp13.02.179

M. T. Kartel, K. V. Voitko, Y. Grebelna, S. V. Zhuravskyi, K. Ivanenko, T. V. Kulyk, S. M. Makhno, Yu. I. Sementsov

Abstract


The aim of the current study was to find changes in the structure and state of the surface of graphene oxide (GO) under the conditions of its reduction and modification by hetero atoms of nitrogen and amino acids. Reduction of GO was performed with hydrazine hydrate (R-GO), doping with nitrogen atoms - urea impregnation and subsequent heat treatment (N-GO), and the surface of GO was modified with sulfur-containing amino acid – L-cysteine by nucleophilic addition (L-GO). The samples obtained were characterized by analytical methods, such as Raman scattering, IR spectroscopy, TPD-mass-spectrometry, dynamic light scattering spectroscopy. The available Raman spectra indicate a defective structure of GO, reduction of GO leads to greater ordering of the structure in relation to GO, nitrating and modification by amino acid - to the opposite effect, a slight deterioration of the structural state. According to the results of IR spectroscopy, also confirmed by TPD-MS, GO has a large number of functional surface groups: (OH), (C=O), (C=C), (C-O-C), (CO-O-CO), (CH). Hydrazine reduction completely hydrophobizes the surface, in the IR spectra there is only a peak at ~ 1040 cm–1, which corresponds to CO-O-CO vibrations, with significantly reduced intensity, as well as bands at 2120 and 2300 cm–1, which indicate the aromatic nature of the samples and exist in all GO derivatives. In nitrogen and sulfur-containing samples (L-GO) a new peak of ~ 1520 cm–1appears, which corresponds to N-H vibrations in amines. Sulfur-containing derivatives have valence vibrations at 600 cm–1, which most likely corresponds to S-H bonds. Thus, modification of GO leads to a significant change in its structure and surface chemistry, which in turn affects the capability of the obtained samples to capture free radicals. Previous empirical studies have shown that this property increases in the series L-GO > GO > N-GO > R-GO.


Keywords


graphene oxide; structure; surface properties

Full Text:

PDF

References


1. He H., Klinowski J., Forster M., Lerf A. A new structural model for graphite oxide. Chem. Phys. Lett. 1998. 287(1): 53. https://doi.org/10.1016/S0009-2614(98)00144-4

2. Hummers W.S., Offeman R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958. 80(6): 1339. https://doi.org/10.1021/ja01539a017

3. Sadri R., Kamali K.Z., Hosseini M., Zubir N., Kazi S.N., Ahmadi G., Dahari M., Huang N.M., Golsheikh A.M. Experimental study on thermo-physical and rheological properties of stable and green reduced graphene oxide nanofluids: Hydrothermal assisted technique. J. Dispersion Sci. Technol. 2017. 38(9): 1302. https://doi.org/10.1080/01932691.2016.1234387

4. Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010. 39(1): 228. https://doi.org/10.1039/B917103G

5. Wei X.-D., Mao L., Soler-Crespo R.A., Paci J.T., Huang J.-X., Nguyen S.T., Espinoza H.D. Plasticity and ductility in graphene oxide through a mechanochemically induced damage tolerance mechanism. Nat. Commun. 2015. 6: 8029. https://doi.org/10.1038/ncomms9029

6. Rawat P.S., Srivastava R.C., Dixit G., Asokan K. Structural, functional and magnetic ordering modifications in graphene oxide and graphite by 100 MeV gold ion irradiation. Vacuum. 2020. 182: 109700. https://doi.org/10.1016/j.vacuum.2020.109700

7. Brodie B.C. On the Atomic Weight of Graphite. Philos. Trans. R. Soc. London. 1859. 149: 249. https://doi.org/10.1098/rstl.1859.0013

8. Kumar H.V., Woltornist S.J., Adamson D.H. Fractionation and Characterization of Graphene Oxide by Oxidation Extent Through Emulsion Stabilization. Carbon. 2016. 98: 491. https://doi.org/10.1016/j.carbon.2015.10.083

9. Feicht P., Siegel R., Thurn H., Neubauer J.W., Seuss M., Szabó T., Talyzin A.V., Halbig C.E., Eigler S. Systematic evaluation of different types of graphene oxide in respect to variations in their in-plane modulus. Carbon. 2017. 114: 700. https://doi.org/10.1016/j.carbon.2016.12.065

10. Boehm H.-P., Scholz W. Der "Verpuffungspunkt" des Graphitoxids. Zeitschrift für Anorganische und Allgemeine Chemie. 1965. 335(1-2): 74. https://doi.org/10.1002/zaac.19653350107

11. You S., Luzan S.M., Szabó T.S., Talyzin A.V. Effect of synthesis method on solvation and exfoliation of graphite oxide. Carbon. 2013. 52: 171. https://doi.org/10.1016/j.carbon.2012.09.018

12. Pei S., Wei Q., Huang K., Cheng H.-M., Ren W Green synthesis of graphene oxide by seconds times cale water electrolytic oxidation. Nat. Commun. 2018. 9: 145. https://doi.org/10.1038/s41467-017-02479-z

13. Amani H., Habibey R., Hajmiresmail S.J., Latifi S., Pazoki-Toroudi H., Akhavan O. Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries. J. Mater. Chem. B. 2017. 5(48): 9452. https://doi.org/10.1039/C7TB01689A

14. Maddu N. Diseases Related to Types of Free Radicals. In: Antioxidants. (IntechOpen, 2019). https://doi.org/10.5772/intechopen.82879

15. Gao L.Z., Zhuang J., Nie L., Zhang J.B., Zhang Y., Gu N., Wang T.H., Feng J., Yang D.L., Perrett S., Yan X. Intrinsicperoxidase-likeactivityofferromagneticnanoparticles. Nat. Nanotechnol. 2007. 2(9): 577. https://doi.org/10.1038/nnano.2007.260

16. Lin Y.H., Ren J.S., Qu X.G. Nano-Gold as Artificial Enzymes: Hidden Talents. Adv. Mater. 2014. 26(25): 4200. https://doi.org/10.1002/adma.201400238

17. Wang G.L., Xu X.F., Qiu L., Dong Y.M., Li Z.J., Zhang C. Dual Responsive Enzyme Mimicking Activity of AgX (X = Cl, Br, I) Nanoparticles and Its Application for Cancer Cell Detection. ACS Appl. Mater. Interfaces. 2014. 6(9): 6434. https://doi.org/10.1021/am501830v

18. Hu A.L., Liu Y.H., Deng H.H., Hong G.L., Liu A.L., Lin X.H., Xia X.H., Chen W. Fluorescent hydrogen peroxide sensor based on cupric oxide nanoparticles and its application for glucose and L-lactate detection. Biosens. Bioelectron. 2014. 61: 374. https://doi.org/10.1016/j.bios.2014.05.048

19. Nia Z.K., Chen J.Y., Tang B., Yuan B., Wang X.G., Li J.L. Optimizing the free radical content of graphene oxide by controlling its reduction. Carbon. 2017. 116: 703. https://doi.org/10.1016/j.carbon.2017.02.060

20. Qiu Y., Wang Z.Y., Owens A.C.E., Kulaots I., Chen Y.T., Kane A.B., Hurt R.H. Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology, Nanoscale. 2014. 6(20): 11744. https://doi.org/10.1039/C4NR03275F

21. Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., Wu Y., Nguyen S.B.T., Ruoff R.S. Synthesis of graphene-based nonosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007. 45: 1558. https://doi.org/10.1016/j.carbon.2007.02.034

22. Ng H.H., Yildiz G.S., Ku J.M., Miller A.A., Woodman O.L., Hart J.L. Chronic NaHS treatment decreases oxidative stress and improves endothelial function in diabetic mice. Diab. Vasc. Dis. Res. 2017. 14(3): 246. https://doi.org/10.1177/1479164117692766

23. Askari H., Seifi B., Kadkhodaee M., Sanadgol N., Elshiekh M., Ranjbaran M., Ahghari P. Protective effects of hydrogen sulfide on chronic kidney disease by reducing oxidative stress, inflammation and apoptosis. EXCLI J. 2018. 17: 14.

24. Shymans'ka T.V., Hoshovs'kaIu.V., Semenikhina O.M., Sagach V.F. Effect of hydrogen sulfide on isolated rat heart reaction under volume load and ischemia-reperfusion. Fiziol Zh. 2012. 58(6): 57. https://doi.org/10.15407/fz58.06.057

25. Pandey D., Reifenberger R., Piner R. Scanning probe microscopy study of exfoliated oxidized graphene sheets. Surf. Sci. 2008. 602(9): 1607. https://doi.org/10.1016/j.susc.2008.02.025

26. Mkhoyan K.A., Contryman A.W., Silcox J., Stewart D.A., Eda G., Mattevi C., Miller S., Chhowalla M. Atomic and Electronic Structure of Graphene-Oxide. Nano Lett. 2009. 9(3): 1058. https://doi.org/10.1021/nl8034256

27. Schniepp H.C., Li J.L., McAllister M.J., Sai H., Herrera-Alonso M., Adamson D.H., Prud'Homme R.K., Car R., Saville D.A., Aksay I.A. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. J. Phys. Chem. B. 2006. 110(17): 8535. https://doi.org/10.1021/jp060936f

28. Raval S. Ultrafast Pump-Probe spectroscopy of Graphene Oxide (GO) and Reduced Graphene Oxide (RGO). Thesis for Master of Science, (Indian Institute of Technology Kharagpur, 2018).

29. Stankovich S., Piner R.D., Chen X., Wu N., Nguyen S.T., Ruoff R.S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 2006. 16(2): 155. https://doi.org/10.1039/B512799H

30. Yamada Y.,Yasuda H., Murota K., Nakamura M., Sodesawa T., Sato S. Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy. J. Mater. Sci. 2013. 48(23): 8171. https://doi.org/10.1007/s10853-013-7630-0

31. Kudin K.N., Ozbas B., Schniepp H.C., Prud'homme R.K., Aksay I.A., Car R. Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets. Nano Lett. 2008. 8(1): 36. https://doi.org/10.1021/nl071822y

32. Bokobza L., Bruneel J.-L., Couzi M. Raman Spectra of Carbon-Based Materials (from Graphite to Carbon Black) and of Some Silicone Composites. Carbon. 2015. 2015(1): 77. https://doi.org/10.3390/c1010077

33. Cancado L.G., Takai K., Enoki T., Endo M., Kim Y.A., Mizusaki H., Jorio A., Coelho L.N., Magalhăes-Paniago R., Pimenta M.A. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 2006. 88(16): 163106. https://doi.org/10.1063/1.2196057

34. Rattana T., Chaiyakun S., Witit-anun N., Nuntawong N., Chindaudom P., Oaew S., Kedkeaw C., Limsuwan P. Preparation and characterization of graphene oxidenanosheets. Procedia Eng. 2012. 32: 759. https://doi.org/10.1016/j.proeng.2012.02.009

35. Nedilko S.G., Revo S.L., Chornii V., Scherbatskyi V., Ivanenko K., Nedielko M., Sementsov Yu., Skoryk M., Nikolenko A., Strelchuk V. Structure and Optical Features of Micro/Nanosized Carbon Forms Prepared by Electrochemical Exfoliation. Nanoscale Res. Lett. 2017. 12: 28. https://doi.org/10.1186/s11671-016-1770-5

36. Kartel M., Sementsov Yu., Dovbeshko G., Karachevtseva L., Makhno S., AleksyeyevaT., Grebelna Y. Lamellar structures from graphene nanoparticles produced by anode oxidation. Adv. Mater. Lett. 2017. 8(3): 212. https://doi.org/10.5185/amlett.2017.1428




DOI: https://doi.org/10.15407/hftp13.02.179

Copyright (©) 2022 M. T. Kartel, K. V. Voitko, Y. Grebelna, S. V. Zhuravskyi, K. Ivanenko, T. V. Kulyk, S. M. Makhno, Yu. I. Sementsov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.