Chemistry, Physics and Technology of Surface, 2022, 13 (3), 239-248.

Analytical expressions for surface concentration distribution in a model electrochemical process with a preceding chemical reaction



DOI: https://doi.org/10.15407/hftp13.03.239

O. I. Gichan

Abstract


The goal of this study is unraveling the specific features of non-stationary surface concentration distribution of electroactive and inactive species in a model electrochemical process with a preceding homogeneous first-order chemical reaction (CE mechanism). For this purpose, the exact analytical expressions for the non-stationary concentration distributions of electroactive and inactive species in the thin layer attached to a planar electrode are analyzed. The both cases of equal and unequal diffusion coefficients of species taking part in the preceding chemical reaction are considered. In the former case, the exact analytical expressions for the concentration distributions of electroactive and inactive species on a planar electrode are obtained. The peculiarities of the limiting cases of zero and infinite frequency of an applied alternating current for the both cases of equal and unequal diffusion coefficients of species are discussed. It is shown that there is a phase shift between AC and the surface concentration of species that changes under the action of this current. At low frequencies, the phase angle tends to p/2, whereas at high frequencies it decreases to p/4. The phase angle is the function of the two important measures, namely, the ratio of the Nernst diffusion layer thickness to the oscillation diffusion layer thickness, and the ratio of the Nernst diffusion layer thickness to the reaction layer one. It is shown that the phase angle depends on the diffusion coefficient of species in different manner for low and high values of the rate constants of the chemical reaction. At low values of these parameters, the phase angle shifts slightly to the range of high frequencies with an increase of diffusion coefficient. At the high rate constants, the phase angle decreases with frequency more slowly, and its dependence on diffusion coefficient is observed only at middle frequencies. The surface concentration of electroactive and inactive species decreases with an increase of frequency, but for the inactive species this process is faster than that for the electroactive species. The influence of the inactive species on the surface concentration of electroactive species decreases at high frequencies and at low rate constants of the preceding chemical reaction. The results obtained shed the light on complex dynamics at an electrode/electrolyte interface under non-stationary conditions.


Keywords


CE mechanism; concentration distribution; preceding chemical reaction; diffusion coefficient; Nernst diffusion layer; reaction layer; oscillation diffusion layer; rate constant

Full Text:

PDF

References


Zivari-Moshfegh F., Nematollahi D., Khoram M.M., Rahimi A. Electrochemical oxidation of o-phenylenediamine and 1,3 dihydrospiro[benzo[d]imidazole-2,1′-cyclohexane]. A comprehensive study and introducing a novel case of CE mechanism. Electrochim. Acta. 2020. 354: 136700. https://doi.org/10.1016/j.electacta.2020.136700

Kumar R., Goel H., Jha S.K., Kant R. Single potential step chronoamperometry for EC′ reaction at rough electrodes: Theory and experiment. J. Electroanal. Chem. 2021. 905: 115899. https://doi.org/10.2139/ssrn.3904618

Molina A., López-Tenés M., Laborda E. Unified theoretical treatment of the Eirrev, CE, EC and CEC mechanisms under voltammetric conditions. Electrochem. Commun. 2018. 92: 48. https://doi.org/10.1016/j.elecom.2018.03.011

Molina A., Laborda E., Gómez Gil J.M., Martinez-Ortiz F., Compton R.G. Analytical solutions for the study of homogeneous first-order chemical kinetic via UV-vis spectroelectrochemistry. J. Electroanal. Chem. 2018. 819: 202. https://doi.org/10.1016/j.jelechem.2017.10.031

Molina A., Gymez-Gil J.M., Gonzalez J., Laborda E. Analytical theory for the voltammetry of the non-Nernstian catalytic mechanism at macro and micro-electrodes: Interplay between the rates of mass transport, electron transfer and catalysis. J. Electroanal. Chem. 2019. 847: 113097. https://doi.org/10.1016/j.jelechem.2019.04.057

Molina A., Laborda E. Detailed theoretical treatment of homogeneous chemical reactions coupled to interfacial charge transfers. Electrochim. Acta. 2018. 286: 374. https://doi.org/10.1016/j.electacta.2018.07.142

Gulaboski R., Kokoskarova P., Petkovska S. Analysis of Drug-Drug Interactions with Cyclic Voltammetry: An Overview of Relevant Theoretical Models and Recent Experimental Achievements. Anal. Bioanal. Electrochem. 2020. 12(3): 345.

Gulaboski R., Mirceski V., Lovric M. Square-wave protein-film voltammetry, new insights in the enzymatic electrode processes coupled with chemical reactions. J. Solid State Electrochem. 2019. 23: 2493. https://doi.org/10.1007/s10008-019-04320-7

Chen H., Compton R.G. Sub- and super-Nernstian Tafel slopes can result from reversible electron transfer coupled to either preceding or following chemical reaction. J. Electroanal. Chem. 2021. 880: 114942. https://doi.org/10.1016/j.jelechem.2020.114942

Vettorelo S.N., Cuéllar M., Ortiz P.I., Garay F. Theory of square-wave voltammetry for the analysis of a CE reaction mechanism complicated by the adsorption of the reactant. J. Electroanal. Chem. 2019. 852: 113519. https://doi.org/10.1016/j.jelechem.2019.113519

Indira K., Rajendran L. Analytical expression of non steady-state concentration for the CE mechanism at a planar electrode. J. Math. Chem. 2012. 50: 1277. https://doi.org/10.1007/s10910-011-9968-3

Harding M.S., Tribollet B., Vivier V., Orazem M.E. The influence of homogeneous reactions on the impedance response of a rotating disk electrode. J. Electrochem. Soc. 2017. 164(11): E3418. https://doi.org/10.1149/2.0411711jes

Gao M., Hazelbaker M.S., Kong R., Orazem M.E. Mathematical model for the electrochemical impedance response of a continuous glucose monitor. Electrochim. Acta. 2018. 275: 119. https://doi.org/10.1016/j.electacta.2018.04.103

Prieto F., Rueda M., Alvarez-Malmagro J. Electrochemical Impedance Spectroscopy analysis of an adsorption process with a coupled preceding chemical step. Electrochim. Acta. 2017. 232: 164. https://doi.org/10.1016/j.electacta.2017.02.106

Gerischer H. Wechselstrompolarisation von Elektroden mit einem potentialbestimmenden Schritt beim Gleichgewichtspotential I. Z. Phys. Chem. 1951. 198(1): 286. https://doi.org/10.1515/zpch-1951-19824

Costamagna P., Sala E.M., Zhang W., Traulsen M.L., Holtappels P. Electrochemical impedance spectroscopy of La0.6Sr0.4Co0.2Fe0.8O3-δ nanofiber cathodes for intermediate temperature-solid oxide fuel cell applications: A case study for the 'depressed' or 'fractal' Gerischer element. Electrochim. Acta. 2019. 319: 657. https://doi.org/10.1016/j.electacta.2019.06.068

Bisquert J., Garcia-Belmonte G., Bueno P., Longo E., Bulhões L.O.S. Impedance of constant phase element (CPE)-blocked diffusion in film electrodes. J. Electroanal. Chem. 1998. 452(2): 229. https://doi.org/10.1016/S0022-0728(98)00115-6

Bisquert J. Beyond the quasistatic approximation: Impedance and capacitance of an exponential distribution of traps. Phys. Rev. B. 2008. 77: 235203. https://doi.org/10.1103/PhysRevB.77.235203

Schiller R., Balog J., Nagy G. Continuous-time random-walk theory of interfering diffusion and chemical reaction with an application to electrochemical impedance spectra of oxidized Zr-1 %Nb. J. Chem. Phys. 2005. 123(9): 094704. https://doi.org/10.1063/1.1949165

Boukamp B.A. Electrochemical impedance spectroscopy in solid state ionics: recent advances. Solid State Ionics. 2004. 169(1-4): 65. https://doi.org/10.1016/j.ssi.2003.07.002

Boukamp B.A., Bouwmeester H.J.M. Interpretation of the Gerischer impedance in solid state ionics. Solid State Ionics. 2003. 157(1-4): 29. https://doi.org/10.1016/S0167-2738(02)00185-6

Boukamp B.A., Verbraeken M., Blank D.H.A., Holtappels P. SOFC-anodes, proof for a finite-length type Gerischer impedance? Solid State Ionics. 2006. 177(26-32): 2539. https://doi.org/10.1016/j.ssi.2006.03.002

Jukic A., Metikos-Hukovic M. The hydrogen evolution reaction on pure and polypyrrole-coated GdNi4Al electrodes. Electrochim. Acta. 2003. 48(25-26): 3929. https://doi.org/10.1016/S0013-4686(03)00531-0

Nielsen J., Hjelm J. Electrochemical impedance of solutions of polysulfides in liquid ammonia: experimental evidence for the Gerischer impedance. Electrochim. Acta. 2014. 115: 31.

Chowdhury N.R., Kant R. Theory of generalized Gerischer impedance for quasi-reversible charge transfer at rough and finite fractal electrodes. Electrochim. Acta. 2018. 281: 445. https://doi.org/10.1016/j.electacta.2018.05.140

Pototskaya V.V., Gichan O.I. On the theory of the generalized Gerischer impedance for an electrode with modeling roughness. Electrochim. Acta. 2017. 235: 583. https://doi.org/10.1016/j.electacta.2017.03.091

Pototskaya V.V., Gichan O.I. The Gerischer finite length impedance: a case of unequal diffusion coefficients. J. Electroanal. Chem. 2019. 852: 113511. https://doi.org/10.1016/j.jelechem.2019.113511

Gichan O.I. Peculiarities of the concentration distribution in the near-electrode layer in a course of homogeneous chemical reaction of first order in a model electrocatalytic process under steady-state conditions. Him. Fiz. Technol. Poverhni. 2018. 9(3): 251. https://doi.org/10.15407/hftp09.03.251

Pototskaya V.V., Gichan O.I. On the origin of phase angle in Warburg finite length diffusion impedance. Int. J. Electrochem. Sci. 2019. 14: 8195. https://doi.org/10.20964/2019.08.97

Koutecky J.A., Levich V.G. Application of rotating disc electrode to study kinetic and katalytic processes in electrochemistry. Doklady Akademii Nauk. 1957. 117: 441.

Dogonadze R.R. Application of rotating disc electrode to study kinetic and katalytic processes in electrochemistry. A case of different difusion coefficients. Zhurnal Fiz. Khimii. 1958. 27: 2437.

Wolfram S. MathematicaTM. (Redwood City: Addison Wesley, 1988).




DOI: https://doi.org/10.15407/hftp13.03.239

Copyright (©) 2022 O. I. Gichan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.