Chemistry, Physics and Technology of Surface, 2022, 13 (3), 311-320.

Effect of supromolecular interactions with cationic surfactant decamethoxine on adsorption of curcumine on highly dispersed silica



DOI: https://doi.org/10.15407/hftp13.03.311

N. O. Lipkovska, V. M. Barvinchenko

Abstract


Curcumin, a sparingly soluble polyphenol of plant origin, has antitumor, anti-inflammatory, antithrombotic, antidiabetic and antimicrobial properties. Currently, an important task is the development of medicinal composites based on curcumin, which provide an increase in its solubility and, accordingly, bioavailability.

The aim of the work is to determine the optimal conditions for the adsorption of curcumin on the surface of a silica enterosorbent as soluble supramolecular complexes with a cationic dimeric surfactant decamethoxine. The UV/Vis spectroscopy data indicate that supramolecular interactions with decamethoxine lead to changes in the spectral characteristics of curcumin in solutions and on silica surface. The bathochromic shift of the absorption spectrum of curcumin in decamethoxine solutions characterizes the polarization of its carbonyl group in supramolecular complexes. The hypsochromic shift in the absorption spectra of curcumin adsorbed from decamethoxine solutions on silica is explained by the violation of its conjugated π-bond system, resulted probably from the change in the spatial orientation of the curcumin molecule at the adsorption of its complexes on the sorbent surface.

Curcumin is adsorbed on highly dispersed silica much more effectively from decamethoxine solutions than from aqueous solutions. The adsorption of curcumin is maximal (92 %) at a concentration of decamethoxine 0.002 M, and decreases sharply to 9 % in the micellar region of concentrations (≥ 0.008 M). The dependence of curcumin adsorption on decamethoxine concentration is described by a domed curve, which indicates a significant contribution of hydrophobic interactions to the formation of supramolecular complexes of curcumin with cationic surfactant and their adsorption on silica surface. The results obtained are of practical importance and can be used in the development of new, more effective medicines containing bioactive curcumin, antiseptic decamethoxine and silica enterosorbent.


Keywords


curcumin; decamethoxine; supramolecular interactions; adsorption; silica; spectral properties

Full Text:

PDF (Українська)

References


Chuiko A.A. Medical Chemistry and Clinical Applications of Silicon Dioxide. (Kyiv: Naukova Dumka, 2003). [in Russian].

Patent UA 85389. Kartel M.T., Turov V.V., Barvinchenko V.M., Lipkovskaya N.O., Postrelko V.M., Taras G.V. Dietary supplement - a tool for the prevention and treatment of exogenous and endogenous intoxications. 2013.

Patent UA 94526. Barvinchenko V.M., Turov V.V., Kartel M.T., Lipkovskaya N.O., Novikov V.P., Cherpak O.M. Dietary supplement "Phytosil" - a means of therapeutic and prophylactic nutrition. 2014.

Turov V.V., Krupska T.V., Golovan A.P., Andriyko L.S., Kartel M.T. Long-acting composite systems based on powdered medicinal plants and nanosilica. Science and Innovations. 2017. 13(2): 59. [in Ukrainian]. https://doi.org/10.15407/scine13.02.053

Ostrovskaya G.V., Krupskaya T.V., Pazyuk L.M., Dzerzhinsky N.E., Turov V.V. Biometric studies of the effectiveness of the composite system of lymphosilicon based on the collection of medicinal plants and nanosilicon. Biotechnologia Acta. 2020. 13(3): 52. [in Ukrainian].

Pogorelyi V.K., Barvinchenko V.N., Pakhlov E.M., Smirnova O.V. The effect of solvent nature on the adsorption interaction between cinnamic acid and silicon dioxide. Colloid J. 2005. 67(2): 172. https://doi.org/10.1007/s10595-005-0077-5

Dovbii O.A., Kazakova O.A., Lipkovskaya N.A. The effect of the structure of cinnamic acid derivatives on their interaction with highly dispersed silica in aqueous medium. Colloid J. 2006. 68(6): 707. https://doi.org/10.1134/S1061933X06060068

Chuiko A.A., Barvinchenko V.N., Dovbiy O.A., Kulik T.V., Lipkovskaya N.A., Pogorelyi V.K. Regularities of adsorption interactions of natural bioactive molecules with surface of nano disperse silica in medicinal composites. Chemistry, Physics and Surface Technology. 2006. 11-12: 358. [in Russian].

Pogorelyi V.K., Kazakova O.A., Barvinchenko V.N., Smirnova O.V., Pakhlov E.M., Gun'ko V.M. Adsorption of cinnamic and caffeic acids on the surface of highly dispersed silica from different solvents. Colloid J. 2007. 69(2): 203. https://doi.org/10.1134/S1061933X07020093

Anastas P.T., Warner J.C. Green chemistry: Theory and practice. (Oxford: Oxford University Press, 2000).

Barvinchenko V.N., Lipkovskaya N.A., Fedyanina T.V., Rugal' A.A. Effect of supramolecular interactions with cationic surfactants on adsorption of flavonoids on highly dispersed silica surface. Colloid J. 2014. 76(2): 139. https://doi.org/10.1134/S1061933X14010025

Lipkovska N.O., Barvinchenko V.M. Supramolecular interactions of natural flavonoids with cationic surfactant ethonium in solutions and on silica surface. Him. Fiz. Tehnol. Poverhni. 2018. 9(1): 92. [in Ukrainian]. https://doi.org/10.15407/hftp09.01.092

Pulido-Moran M., Moreno-Fernandez J., Ramirez-Tortosa C., Ramirez-Tortosa M. Curcumin and health. Molecules. 2016. 21(3): 264. https://doi.org/10.3390/molecules21030264

Yavarpour-Bali H., Ghasemi-Kasman M., Pirzadeh M. Curcumin-loaded nanoparticles: a novel therapeutic strategy in treatment of central nervous system disorders. Int. J. Nanomed. 2019. 14: 4449. https://doi.org/10.2147/IJN.S208332

Chen M., Du Z-Y., Zheng X., Li D-L., Zhou R-P., Zhang K. Use of curcumin in diagnosis, prevention, and treatment of Alzheimer's disease. Neural. Regen. Res. 2018. 13(4): 742. https://doi.org/10.4103/1673-5374.230303

Dourado D., Freire D.T., Pereira D.T., Amaral-Machado L., Alencar É.N., de Barros A.L.B., Egito E.S.T. Will curcumin nanosystems be the next promising antiviral alternatives in COVID-19 treatment trials? Biomed. Pharmacother. 2021.139: 111578. https://doi.org/10.1016/j.biopha.2021.111578

Mashkovskiy M.D. Medicinal products. (Moskow: Nova Volna, 2010). [in Russian].

Rusanov A.I., Shchekin A.K. Micelle formation in solutions of surfactants. (Sankt-Peterburg: Lan', 2016). [in Russian].

Holmberg K. Handbook of Applied Colloid and Surface Chemistry. (Chishester: Wiley, 2002).

Bolotov V.V., Zarechensky M.A., Kobzar G.L. Development and research of solid-contact decamethoxine-selective electrode. News of pharmacy. 2003. 3: 29. [in Ukrainian].

Bernshtein I.Ya., Kaminskiy Yu.L. Spectrophotometric analysis in organic chemistry. (Leningrad: Khimiya, 1986). [in Russian].

Bernabé-Pineda M., Ramírez-Silva M.T., Romero-Romo M., González-Vergara E., Rojas-Hernández A. Determination of acidity constants of curcumin in aqueous solution and apparent rate constant of its decomposition. Spectrochim. Acta Part A. 2004. 60 (5): 1091. https://doi.org/10.1016/S1386-1425(03)00342-1

Manolova Y., Deneva V., Antonov L., Drakalska E., Momekova D., Lambov N. The effect of the water on the curcumin tautomerism: A quantitative approach. Spectrochim. Acta, Part A. 2014. 132: 815. https://doi.org/10.1016/j.saa.2014.05.096

Khalil M.I., Al-Zahem A.M., Al-Qunaibit M.H. Synthesis, characterization, mössbauer parameters, and antitumor activity of Fe(III) curcumin complex. Bioinorg. Chem. Appl. 2013. 12: 1. https://doi.org/10.1155/2013/982423

Mary C., Vijayakumar S., Shankar R. Metal chelating ability and antioxidant properties of Curcumin-metal complexes - A DFT approach. J. Mol. Graph. Model. 2018. 79: 1. https://doi.org/10.1016/j.jmgm.2017.10.022

Zhao X.Z., Jiang T., Wang L., Yang H., Zhang S., Zhou P. Interaction of curcumin with Zn(II) and Cu(II) ions based on experiment and theoretical calculation. J. Mol. Struct. 2010. 984(1-3): 316. https://doi.org/10.1016/j.molstruc.2010.09.049

Bhatia N.K., Kishor S., Katyal N., Gogoi P., Narang P., Deep S. Effect of pH and temperature on conformational equilibria and aggregation behaviour of curcumin in aqueous binary mixtures of ethanol. RSC Adv. 2016. 6: 103275. https://doi.org/10.1039/C6RA24256A

Hazra M.K., Roy S., Bagchi B. Hydrophobic hydration driven self-assembly of Curcumin in water: Similarities to nucleation and growth under large metastability, and an analysis of water dynamics at heterogeneous surfaces. J. Chem. Phys. 2014. 141: 501. https://doi.org/10.1063/1.4895539

Goncharuk O.V., Gun'ko V.M., Ugnivenko A., Terpilowski K., Skwarek E., Janusz W. Effect of ethonium adsorption on structure formation in nanosilica dispersions. Nano Res. Appl. 2017. 3(3): 1. https://doi.org/10.21767/2471-9838.100029




DOI: https://doi.org/10.15407/hftp13.03.311

Copyright (©) 2022 N. O. Lipkovska, V. M. Barvinchenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.