Morphologic and textural effects of gelation and mechanochemical activation on dry or wetted simple and complex nanooxides
DOI: https://doi.org/10.15407/hftp13.04.361
Abstract
The characteristics and properties of fumed oxides depend strongly on various external actions that is of importance from a practical point of view. Therefore, gelation or high-pressure cryogelation (HPC) of aqueous media pure or with 0.1 M NaCl, and mechanochemical activation (MCA) of dry or wetted powders of individual (silica, alumina, their mechanical blends) and complex (silica/titania, alumina/silica/titania, AST1, AST1/A–300) nanooxides were studied to analyze the influence of the nanooxide composition, particulate morphology, and preparation conditions on changes in the morphological and textural characteristics of treated samples. The temperature-pressure behavior of different phases (silica, alumina, and titania) under HPC can result in destroy of complex core-shell nanoparticles (100–200 nm in size) in contrast to small nonporous nanoparticles, NPNP (5–20 nm). The textural characteristics of nanooxides are sensitive to any external actions due to compaction of such supra-NPNP structures as aggregates of nanoparticles, agglomerates of aggregates, and visible structures in powders. The compaction of supra-NPNP enhances the pore volume but much weakly affects the specific surface area (with one exception of AST1) because small NPNP are relatively stable during any external actions (HPC, MCA). The compacted materials are characterized by enhanced mesoporosity shifted to macroporosity with decreasing specific surface area and increasing sizes of nanoparticles or to mesopores with increasing MCA time or amounts of water in wetted powders. At low hydration of the A–300 powder (h = 0.5 g/g), the value of SBET slightly increases if MCA is provided by stirring or ball-milling. Diminution of the freezing temperature from 208 to 77.4 K during HPC results in enhanced compaction of aggregates and agglomerates but this does not practically affect the primary nanoparticles. The degree of decomposition of core-shell nanoparticles of AST1 does not practically increase with decreasing freezing temperature from 208 to 77.4 K. Decomposition of core-shell AST1 particles is inhibited under HPC by added A–300 (1 : 1) working as a damper.
Keywords
References
Kriechbaum G.W., Kleinschmit P. Superfine oxide powders - flame hydrolysis and hydrothermal synthesis. Adv. Mater. 1989. 28(10): 330. https://doi.org/10.1002/adma.19890011004
Hastie J.W. Materials Chemistry at High Temperatures. V. 1. Characterization. V. 2. Processing and Performance. (Clifton, NJ: Humana Press, 1990). https://doi.org/10.1007/978-1-4612-0481-7
Ullmann's Encyclopedia of Industrial Chemistry. (Weinheim: Wiley-VCH, 2008).
Basic characteristics of Aerosil fumed silica 4th ed. Tech. Bull. Fine Particles 11. (Hanau: Evonik Industries, 2014).
Technical Information. TI 1176. (Frankfurt: Degussa AG, 1996).
Auner N., Weis J. Oganosilicon Chemistry VI. (Weinheim: Wiley-VCH Verlag GmbH, 2005). https://doi.org/10.1002/9783527618224
Bhushan B. Encyclopedia of Nanotechnology. (Dordrecht: Springer, 2012). https://doi.org/10.1007/978-90-481-9751-4
Afyon S., Hagemann M., Somer M., Isfort C.S. Thermal and hydrothermal stability of flame hydrolytically synthesized SiO2/TiO2 mixed oxides. Solid State Sciences. 2013. 18: 91. https://doi.org/10.1016/j.solidstatesciences.2013.01.002
Albers P., Maier M., Reisinger M., Hannebauer B., Weinand R. Physical boundaries within aggregates - differences between amorphous, para-crystalline, and crystalline structures. Cryst. Res. Technol. 2015. 50(11): 846. https://doi.org/10.1002/crat.201500040
Schaefer D.W., Hurd A.J. Growth and structure of combustion aerosols: fumed silica. Aerosol Sci. Technol. 1990. 12(4): 876. https://doi.org/10.1080/02786829008959400
Roth P. Particle synthesis in flames. Proc. Combust. Inst. 2007. 31(2): 1773. https://doi.org/10.1016/j.proci.2006.08.118
Pratsinis S.E. Flame aerosol synthesis of ceramic powders. Prog. Energy Combust. Sci. 1998. 24(3): 197. https://doi.org/10.1016/S0360-1285(97)00028-2
Mueller R., Madler L., Pratsinis S.E. Nanoparticle synthesis at high production rates by flame spray pyrolysis. Chem. Eng. Sci. 2003. 58(10): 1969. https://doi.org/10.1016/S0009-2509(03)00022-8
Camenzind A., Caseri W.R., Pratsinis S.E. Flame-made nanoparticles for nanocomposites. Nano Today. 2010. 5(1): 48. https://doi.org/10.1016/j.nantod.2009.12.007
Teoh W.Y., Lutz M. Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication. Nanoscale. 2010. 2(8): 1324. https://doi.org/10.1039/c0nr00017e
Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013). https://doi.org/10.1201/b14202
Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk O.V., Pahklov E.M., Skubiszewska-Zięba J., Blitz J.P. Interfacial phenomena at a surface of individual and complex fumed nanooxides. Adv. Colloid Interface Sci. 2016. 235: 108. https://doi.org/10.1016/j.cis.2016.06.003
Brown G.E.Jr., Henrich V.E., Casey W.H., Clark D.L., Eggleston C., Felmy A., Goodman D.W., Gratzel M., Maciel G., McCarthy M.I., Nealson K.H., Sverjensky D.A., Toney M.F., Zachara J.M. Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem. Rev. 1999. 99(1): 77. https://doi.org/10.1021/cr980011z
Gun'ko V.M., Mironyuk I.F., Zarko V.I., Voronin E.F., Turov V.V., Pakhlov E.M., Goncharuk E.V., Nychiporuk Yu.M., Kulik T.V., Palyanytsya B.B., Pakhovchishin S.V., Vlasova N.N., Gorbyk P.P., Mishchuk O.A., Chuiko A.A., Skubiszewska-Zięba J., Janusz W., Turov A.V., Leboda R. Morphology and surface properties of fumed silicas. J. Colloid Interface Sci. 2005. 289(2): 427. https://doi.org/10.1016/j.jcis.2005.05.051
Gun'ko V.M., Nychiporuk Y.M., Zarko V.I., Goncharuk E.V., Mishchuk O.A., Leboda R., Skubiszewska-Zięba J., Skwarek E., Janusz W., Yurchenko G.R., Osovskii V.D., Ptushinskii Y.G., Turov V.V., Gorbyk P.P., Blitz J.P., Gude K. Relationships between surface compositions and properties of surfaces of mixed fumed oxides. Appl. Surf. Sci. 2007. 253(6): 3215. https://doi.org/10.1016/j.apsusc.2006.07.013
Gun'ko V.M., Blitz J.P., Gude K., Zarko V.I., Goncharuk E.V., Nychiporuk Y.M., Leboda R., Skubiszewska-Zięba J., Osovskii V.D., Ptushinskii Y.G., Mishchuk O.A., Pakhovchishin S.V., Gorbyk P.P. Surface structure and properties of mixed fumed oxides. J. Colloid Interface Sci. 2007. 314(1): 119. https://doi.org/10.1016/j.jcis.2007.05.025
Gun'ko V.M., Zarko V.I., Turov V.V., Oranska O.I., Goncharuk E.V., Nychiporuk Y.M., Pakhlov E.M., Yurchenko G.R., Leboda R., Skubiszewska-Zięba J., Osovskii V.D., Ptushinskii Y.G., Derzhypolskyi A.G., Melenevsky D.A., Blitz J.P. Morphological and structural features of individual and composite nanooxides with alumina, silica, and titania in powders and aqueous suspensions. Powder Technology. 2009. 195(3): 245. https://doi.org/10.1016/j.powtec.2009.06.005
Gun'ko V.M., Bogatyrev V.M., Borysenko M.V., Galaburda M.V., Sulim I.Y., Petrus L.V., Korduban O.M., Polshin E.V., Zaulychnyy Ya.V., Karpets M.V., Foya O.O., Myronyuk I.F., Chelyadyn V.L., Dzhura U.Ya., Leboda R., Skubiszewska-Zięba J., Blitz J.P. Morphological, structural and adsorptional features of oxide composites of different origin. Appl. Surf. Sci. 2010. 256(17): 5263. https://doi.org/10.1016/j.apsusc.2009.12.115
Gun'ko V.M., Yurchenko G.R., Turov V.V., Goncharuk E.V., Zarko V.I., Zabuga A.G., Matkovsky A.K., Leboda R., Skubiszewska-Zięba J., Janusz W., Phillips G.J., Mikhalovsky S.V. Adsorption of polar and nonpolar compounds onto complex nanooxides with silica, alumina, and titania. J. Colloid Interface Sci. 2010. 348(2): 546. https://doi.org/10.1016/j.jcis.2010.04.062
Gun'ko V.M., Turov V.V., Pakhlov E.M., Matkovsky A.K., Krupska T.V., Kartel M.T., Charmas B. Blends of amorphous/crystalline nanoalumina and hydrophobic amorphous nanosilica. J. Non-Cryst. Solids. 2018. 500: 351. https://doi.org/10.1016/j.jnoncrysol.2018.08.020
Gun'ko V.M., Turov V.V., Pakhlov E.M., Krupska T.V., Charmas B. Effect of water content on the characteristics of hydro-compacted nanosilica. Appl. Surf. Sci. 2018. 459: 171. https://doi.org/10.1016/j.apsusc.2018.07.213
Iler R.K. The Chemistry of Silica. Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. (Chichester: Wiley, 1979).
Legrand A.P. The Surface Properties of Silicas. (New York: Wiley, 1998).
Bergna H.E., Roberts W.O. Colloidal Silica: Fundamentals and Applications. (Boca Raton: CRC Press, 2006). https://doi.org/10.1201/9781420028706
Chuiko A.A. Medical Chemistry and Clinical Application of Silica. (Kiyv: Naukova Dumka, 2003). [in Russian].
Gun'ko V.M., Turov V.V., Zarko V.I., Pakhlov E.M., Prykhod'ko G.P., Remez O.S., Leboda R., Skubiszewska-Zięba J., Blitz J.P. High-pressure cryogelation of nanosilica and surface properties of cryosilicas. Colloids Surf. A. 2013. 436: 618. https://doi.org/10.1016/j.colsurfa.2013.07.036
Gun'ko V.M., Turov V.V., Zarko V.I., Pakhlov E.M., Matkovsky A.K., Oranska O.I., Palyanytsya B.B., Remez O.S., Nychiporuk Y.M., Ptushinskii Y.G., Leboda R., Skubiszewska-Zięba J. Cryogelation of individual and complex nanooxides under different conditions. Colloids Surf. A. 2014. 456: 261. https://doi.org/10.1016/j.colsurfa.2014.05.045
Gun'ko V.M., Zarko V.I., Pakhlov E.M., Matkovsky A.K., Remez O.S., Charmas B., Skubiszewska-Zięba J. Low-temperature high-pressure cryogelation of nanooxides. J. Sol-Gel Sci. Technol. 2015. 74(1): 45. https://doi.org/10.1007/s10971-014-3575-2
Gun'ko V.M., Savina I.N., Mikhalovsky S.V. Cryogels: Morphological, structural and adsorption characterization. Adv. Colloid Interface Sci. 2013. 187-188: 1. https://doi.org/10.1016/j.cis.2012.11.001
Mills A. The freezing bomb. Phys. Education. 2010. 45(2): 153. https://doi.org/10.1088/0031-9120/45/2/004
Suwanchawalit C., Patil A.J., Kumar R.K., Wongnawa S., Mann S. Fabrication of ice-templated macroporous TiO2-chitosan scaffolds for photocatalytic applications. J. Mater. Chem. 2009. 19(44): 8478. https://doi.org/10.1039/b912698h
Nishihara H., Mukai S.R., Fujii Y., Tago T., Masuda T., Tamon H. Preparation of monolithic SiO2-Al2O3 cryogels with inter-connected macropores through ice templating. J. Mater. Chem. 2006. 16(31): 3231. https://doi.org/10.1039/B604780G
Nishihara H., Iwamura S., Kyotani T. Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template. J. Mater. Chem. 20008. 18(31): 3662. https://doi.org/10.1039/b806005c
Gu L., Zhang J., Li L., Du Z., Cai Q., Yang X. Hydroxyapatite nanowire composited gelatin cryogel with improved mechanical properties and cell migration for bone regeneration. Biomed. Mater. 2019. 14(4): 045001. https://doi.org/10.1088/1748-605X/ab1583
Nishihara H., Mukai S.R., Shichi S., Tamon H. Preparation of titania-silica cryogels with controlled shapes and photocatalysis through unidirectional freezing. Mater. Lett. 2010. 64(8): 959. https://doi.org/10.1016/j.matlet.2010.01.073
Xu R., Yan Xu Y. Modern Inorganic Synthetic Chemistry. (Elsevier: Amsterdam, 2017).
Klotz M., Amirouche I., Guizard C., Viazzi C., Deville S. Ice templating-an alternative technology to produce micromonoliths. Adv. Eng. Mater. 2012. 14(12): 1123. https://doi.org/10.1002/adem.201100347
Deville S. Freeze-casting of porous ceramics: a review of current achievements and issues. Adv. Eng. Mater. 2008. 10(3): 155. https://doi.org/10.1002/adem.200700270
Niu T., Shen L. M., Liu Y. Preparation of meso-macroporous α-alumina using carbon nanotube as the template for the mesopore and their application to the preferential oxidation of CO in H2-rich gases. J Porous Mater. 2013. 20: 789. https://doi.org/10.1007/s10934-012-9654-2
Türkmen D., Bakhshpour M., Akgönüllü S., Süleyman Aşır S, Denizli A. Heavy metal ions removal from wastewater using cryogels: A review. Front. Sustainability. 2022. 3: 765592. https://doi.org/10.3389/frsus.2022.765592
Zhang M., Li Y., Uchaker E., Candelaria S., Shen L., Wang T., Cao G. Homogenous incorporation of SnO2 nanoparticles in carbon cryogels via the thermal decomposition of stannous sulfate and their enhanced lithium-ion intercalation properties. Nano Energy. 2013. 2(5): 769. https://doi.org/10.1016/j.nanoen.2013.01.009
Shlyakhtin O.A., Oh Y.-J. Inorganic cryogels for energy saving and conversion. J. Electroceram. 2009. 23: 452. https://doi.org/10.1007/s10832-008-9488-0
Mukai S.R., Nishihara H., Shichi S., Tamon H. Preparation of porous TiO2 cryogel fibers through unidirectional freezing of hydrogel followed by freeze-drying. Chem. Mater. 2004. 16(24): 4987. https://doi.org/10.1021/cm0491328
Pons A., Casas L.l., Estop E., Molins E., Harris K.D.M., Xu M. A new route to aerogels: Monolithic silica cryogels. J. Non-Crystal. Solid. 2012. 358(3): 461. https://doi.org/10.1016/j.jnoncrysol.2011.10.031
Tamon H., Akatsuka T., Mori H., Sano N. Synthesis of zeolite monolith with hierarchical micro/macropores by ice-templating and steam-assisted crystallization. Chem. Eng. Trans. 2013. 32: 2059.
Babić B., Kokunešoski M., Miljković M., Prekajski M., Matović B., Gulicovski J., Bučevac D. Synthesis and characterization of the SBA-15/carbon cryogel nanocomposites. Ceramic. Int. 2012. 38: 4875. https://doi.org/10.1016/j.ceramint.2012.02.078
Maroni F., Bruni P., Suzuki N., Aihara Y., Agostini M., Branchi M., Navarra M.A., Nobili F., Matic A., Croce F. V2O5 cryogel: A versatile electrode for all solid state lithium batteries. J. Electrochem. Soc. 2019. 166: A3927.https://doi.org/10.1149/2.0031916jes
Kim J.W., Tazumi K., Okaji R., Ohshima M. Honeycomb monolith structured silica with highly ordered, three-dimensional interconnected macroporous walls. Chem. Mater. 2009. 21(15): 3476. https://doi.org/10.1021/cm901265y
Hong C., Zhang X., Han J., Du J., Zhang W. Camphene-based freeze cast ZrO2 foam with high compressive strength. Mater. Chem. Phys. 2010. 119(3): 359. https://doi.org/10.1016/j.matchemphys.2009.10.031
Tarutani N., Hashimoto M., Ishigaki T. Organic-inorganic hybrid nanocrystal-based cryogels with size-controlled mesopores and macropores. Langmuir. 2021. 37(9): 2884. https://doi.org/10.1021/acs.langmuir.0c03112
Sinkó K. Gel-derived porous alumina systems. Mater. Lett. 2013. 107: 344. https://doi.org/10.1016/j.matlet.2013.06.048
Zhang H., Cooper A.I. Aligned porous structures by directional freezing. Adv. Mater. 2007. 19(11): 1529. https://doi.org/10.1002/adma.200700154
Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. 2nd ed. (London: Academic Press, 1982).
Gun'ko V.M. Textural characteristics of composite adsorbents analyzed with density functional theory and self-consistent regularization procedure. Him. Fiz. Tehnol. Poverhni. 2020. 11(2): 163. https://doi.org/10.15407/hftp11.02.163
Gun'ko V.M. Morphological and textural features of various materials composed of porous or nonporous nanoparticles differently packed in secondary structures. Appl. Surf. Sci. 2021. 569: 151117. https://doi.org/10.1016/j.apsusc.2021.151117
Gun'ko V.M., Mikhalovsky S.V. Evaluation of slitlike porosity of carbon adsorbents. Carbon. 2004. 42(4): 843. https://doi.org/10.1016/j.carbon.2004.01.059
Neimark A.V., Ravikovitch P.I. Capillary condensation in MMS and pore structure characterization. Microporous Mesoporous Mater. 2001. 44/45: 697. https://doi.org/10.1016/S1387-1811(01)00251-7
JCPDS Database. International Center for Diffraction Data. PA, 2001.
Adamson A.W., Gast A.P. Physical Chemistry of Surface. Sixth edition. (New York: Wiley, 1997).
Gun'ko V.M., Voronin E.F., Nosach L.V., Turov V.V., Wang Z., Vasilenko A.P., Leboda R., Skubiszewska-Zięba J., Janusz W., Mikhalovsky S.V. Structural, textural and adsorption characteristics of nanosilica mechanochemically activated in different media. J. Colloid Interface Sci. 2011. 355(2): 300. https://doi.org/10.1016/j.jcis.2010.12.008
Gun'ko V.M., Oranska O.I., Paientko V.V., Sulym I.Ya. Particulate morphology of nanostructured materials. Chem. Phys. Technol. Surf. 2020. 11(3): 368. https://doi.org/10.15407/hftp11.03.368
Gun'ko V.M., Zarko V.I., Leboda R., Chibowski E. Aqueous suspensions of fumed oxides: particle size distribution and zeta potential. Adv. Colloid Interface Sci. 2001. 91(1): 1. https://doi.org/10.1016/S0001-8686(99)00026-3
Gun'ko V.M., Turov V.V., Goncharuk O.V., Pakhlov E.M., Matkovsky O.K. Interfacial phenomena at a surface of individual and complex fumed nanooxides. Surface. 2019. 11: 3. https://doi.org/10.15407/Surface.2019.11.003
DOI: https://doi.org/10.15407/hftp13.04.361
Copyright (©) 2022 V. M. Gun’ko
This work is licensed under a Creative Commons Attribution 4.0 International License.