Chemistry, Physics and Technology of Surface, 2022, 13 (4), 415-424.

Electrically conductive composites based on TiO2 and carbon nanostructures manufactured using 3D printing of CJP technology



DOI: https://doi.org/10.15407/hftp13.04.415

Ol. D Zolotarenk, E. P. Rudakova, N. Y. Akhanova, An. D. Zolotarenko, D. V. Shchur, M. T. Gabdullin, M. N. Ualkhanova, N. A. Gavrylyuk, M. V. Chymbai, T. V. Myronenko, I. V. Zagorulko, A. D. Zolotarenko, O. O. Havryliuk

Abstract


The mechanical mixtures of titanium oxide (TiO2) with carbon nanostructures for 3D printing of CJP technology, which are used as consumables for the manufacturing of electrically conductive composite 3D products, are created in this work. Various carbon nanostructures (single- and multi-walled carbon nanotubes and carbon nanofibers) were used in the creation of composite 3D products (TiO2–СNS) by CJP 3D printing technology. Optimal conditions for processing of mechanical mixtures (TiO2/MWCNT) on a planetary ball mixer for composite 3D products (CJP) were studied and proposed. The dose of the deformation influence on the mechanical mixture under optimal conditions of mechanochemical processing (76 J/g), which allows not to deteriorate the electrical conductivity of the material, is determined.

The dependence of the electrical conductivity of composite 3D products (CNS/TiO2, where the CNS content is 3 wt. %) on the type of carbon nanostructures (SWCNT, MWCNT and CNF) contained in ceramics (TiO2), is constructed. The exponential dependence of the specific electrical conductivity (G) of composite 3D products (TiO2–MWCNT) on the mass content of multi-walled carbon nanotubes, is also recorded in the work.

In the framework of the study of the electrical conductivity of composite 3D products (CJP), a fuel cell cathode based on a Pt/TiO2–MWCNT composite was created. It was found that the catalyst Pt/TiO2–MWCNT, which contains 5 wt. % of carbon nanotubes, has the best catalytic activity in oxygen recovery. At the same time, the average particle size of platinum (Pt) is 5–10 nm, while the content of Pt in the EDX samples is approximately ~10 wt. %. Also, studies were carried out from the mixing of Pt/TiO2-MWCNT composites with MWCNT content 15 and 50 wt. %. Samples were analyzed by transmission and scanning electron microscopy.


Keywords


carbon nanostructures (CNS); nanocomposite (TiO2–CNS); titanium oxide (TiO2); electrical conductivity; catalytic activity; carbon nanotubes (CNT); Pt/TiO2–CNT; 3D printing; CJP; fuel cell; additive technology; hydrogen energy

Full Text:

PDF

References


Matysina Z.A., Zolonarenko An.D., Zolonarenko Al.D., Gavrylyuk N.A., Veziroglu A., Veziroglu T.N., Pomytkin A.P., Schur D.V., Gabdullin M.T. Features of the interaction of hydrogen with metals, alloys and compounds (Hydrogen atoms in crystalline solids. (Kyiv: "KIM" Publishing House, 2022).

Zolotarenko A.D., Zolotarenko A.D., Veziroglu A., Veziroglu T.N., Shvachko N.A., Pomytkin A.P., Gavrlyuk N.A., Schur D.V., Ramazanov T.S., Gabdullin M.T. The use of ultrapure molecular hydrogen en-riched with atomic hydrogen in apparatuses of artificial lung ventilation in the fight against virus COVID-19. Int. J. Hydrogen Energy. 2022. 47(11): 7281. https://doi.org/10.1016/j.ijhydene.2021.03.025

Zolotarenko Ol.D., Rudakova O.P., Zolotarenko An.D., Shchur D.V., Gavrilyuk N.A., Kartel N.T., Zolo-tareko O.D., Mashira V.A. Interstitial Atoms in Octa- and Tetrahedral Interstices of BCC Crystals with a Free Surface. Bulletin. Series Physical. 2022. 81(2): 68. [in Russian]. https://doi.org/10.26577/RCPh.2022.v81.i2.09

Schur D.V., Zaginaichenko S.Y., Savenko A.F., Bogolepov V.A., Anikina N.S. Experimental evaluation of total hydrogen capacity for fullerite C60. Int. J. Hydrogen Energy. 2011. 36(1): 1143. https://doi.org/10.1016/j.ijhydene.2010.06.087

Schur D.V., Zaginaichenko S.Y., Veziroglu T.N. The hydrogenation process as a method of investigation of fullerene C60 molecule. Int. J. Hydrogen Energy. 2015. 40(6): 2742. https://doi.org/10.1016/j.ijhydene.2014.12.092

Matysina Z.A., Zaginaichenko S.Yu., Shchur D.V., Viziroglu A., Viziroglu T.N., Gabdullin M.T., Java-dov N.F., Zolotarenko An.D., Zolotarenko Al.D. Hydrogen in crystals. (Kyiv: "KIM" Publishing House, 2017). [in Russian].

Schur D.V., Zaginaichenko S.Y., Savenko A.F., Bogolepov V.A., Anikina N.S., Zolotarenko A.D., Matysina Z.A., Veziroglu T.N., Skryabina N.E. Hydrogenation of fullerite C60 in gaseous phase. NATO Science for Peace and Security Series C: Environmental Security. 2011. 2: 87. https://doi.org/10.1007/978-94-007-0899-0_7

Matysina Z.A., Pogorelova O.S., Zaginaichenko S.Yu., Schur D.V. The surface energy of crystalline CuZn and FeAl alloys. J. Phys. Chem Solids. 1995. 56(1): 9. https://doi.org/10.1016/0022-3697(94)00106-5

Matysina Z.A., Zaginaichenko S.Yu., Schur D.V. Hydrogen solubility in alloys under pressure. Int. J. Hydrogen Energy. 1996. 21(11-12): 1085. https://doi.org/10.1016/S0360-3199(96)00050-X

Matysina Z.A., Gavrylyuk N.A., Kartel M.T., Veziroglu A., Veziroglu T.N., Pomytkin A.P., Schur D.V., Rama-zanov T.S., Gabdullin M.T., Zolotarenko An.D., Zolotarenko Al.D., Shvachko N.A. Hydrogen sorption proper-ties of new magnesium intermetallic compounds with MgSnCu4 type structure. Int. J. Hydrogen Energy. 2021. 46(50): 25520. https://doi.org/10.1016/j.ijhydene.2021.05.069

Shchur D.V., Zaginaichenko S.Yu., Veziroglu A., Veziroglu T.N., Gavrylyuk N.A., Zolotarenko A.D., Gab-dullin M.T., Ramazanov T.S., Zolotarenko Al.D., Zolotarenko An.D. Prospects of Producing Hydrogen-Ammonia Fuel Based on Lithium Aluminum Amide. Russ. Phys. J. 2021. 64(1): 89. https://doi.org/10.1007/s11182-021-02304-7

Zaginaichenko S.Yu., Matysina Z.A., Schur D.V., Zolotarenko A.D. Li-N-H system - Reversible accumulator and store of hydrogen. Int. J. Hydrogen Energy. 2012. 37(9): 7565. https://doi.org/10.1016/j.ijhydene.2012.01.006

Tikhotskii S.A., Fokin I.V., Schur D.V. Traveltime seismic tomography with adaptive wavelet parameterization. Izvestiya, Physics of the Solid Earth. 2011. 47(4): 327. https://doi.org/10.1134/S1069351311030062

Zolotarenko A.D., Zolotarenko A.D., Veziroglu A., Veziroglu T.N., Shvachko N.A., Pomytkin A.P., Schur D.V., Gavrylyuk N.A., Ramazanov T.S., Akhanova N.Y., Gabdullin M.T. Methods of theoretical calculations and of experimental researches of the system atomic hydrogen - metal. Int. J. Hydrogen Energy. 2022. 47(11): 7310. https://doi.org/10.1016/j.ijhydene.2021.03.065

Matysina Z.A., Zaginaichenko S.Y., Schur D.V., Veziroglu T.N., Veziroglu A., Gabdullin M.T., Zolo-tarenko Al.D., Zolotarenko An.D. The mixed lithium-magnesium imide Li2Mg(NH)2 a promising and reliable hydrogen storage material. Int. J. Hydrogen Energy. 2018. 43(33):16092. https://doi.org/10.1016/j.ijhydene.2018.06.168

Matysina Z.A., Zaginaichenko S.Y., Schur D.V., Zolotarenko A.D., Zolotarenko A.D., Gabdulin M.T., Kopylova L.I., Shaposhnikova T.I. Phase Transformations in the Mixed Lithium-Magnesium Imide Li2Mg(NH)2. Russ. Phys. J. 2019. 61(12): 2244. https://doi.org/10.1007/s11182-019-01662-7

Schur D.V., Veziroglu A., Zaginaychenko S.Y., Matysina Z.A., Veziroglu T.N., Gabdullin M.T., Rama-zanov T.S., Zolonarenko A.D., Zolonarenko A.D. Theoretical studies of lithium-aluminum amid and ammoni-um as perspective hydrogen storage. Int. J. Hydrogen Energy. 2019. 44(45): 24810. https://doi.org/10.1016/j.ijhydene.2019.07.205

Matysina Z.A., Zaginaichenko S.Y., Schur D.V., Zolotarenko A.D., Zolotarenko A.D., Gabdulin M.T. Hy-drogen Sorption Properties of Potassium Alanate. Russ. Phys. J. 2018. 61(2): 253. https://doi.org/10.1007/s11182-018-1395-5

Zolotarenko An.D., Zolotarenko Al.D., Veziroglu A., Veziroglu T.N., Shvachko N.A., Pomytkin A.P., Gavry-lyuk N.A., Schur D.V., Ramazanov T.S., Gabdullin M.T. The use of ultrapure molecular hydrogen enriched with atomic hydrogen in apparatuses of artificial lung ventilation in the fight against virus COVID-19. Int. J. Hydro-gen Energy. 2022. 47(11): 7281. https://doi.org/10.1016/j.ijhydene.2021.03.025

Lavrenko V.A., Podchernyaeva I.A., Shchur D.V., Zolotarenko An.D., Zolotarenko Al.D. Features of Physical and Chemical Adsorption During Interaction of Polycrystalline and Nanocrystalline Materials with Gases. Powder Metall. Met. Ceram. 2018. 56: 504. https://doi.org/10.1007/s11106-018-9922-z

Zolotarenko Ol.D, Ualkhanova M.N., Rudakova E.P., Akhanova N.Y., Zolotarenko An. D., Shchur D.V., Gabdullin M.T., Gavrylyuk N.A., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V., Havryliuk O.O. Ad-vantages and disadvantages of electric arc methods for the synthesis of carbon nanostructures. Him. Fiz. Tehnol. Poverhni. 2022. 13(2): 209. [in Ukrainian]. https://doi.org/10.15407/hftp13.02.209

Matysina Z.A. , Zolotarenko Ol.D. , Ualkhanova M., Rudakova O.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Gavrylyuk N.A., Zolotarenko O.D., Chymbai M.V., Zagorulko I.V. Electric Arc Methods to Synthesize Carbon Nanostructures. Prog. Phys. Met. 2022. 23(3): 528.

Zolotarenko A.D., Zolotarenko A.D., Rudakova E., Zaginaichenko S.Y., Dubovoy A.G., Schur D.V., Tarasenko Y.A. The Peculiarities of Nanostructures Formation in Liquid Phase. In Carbon Nanomaterials in Clean Energy Hydrogen Systems-II. 2011. 2: 137. https://doi.org/10.1007/978-94-007-0899-0_11

Schur D.V., Dubovoy A.G., Zaginaichenko S.Yu., Adejev V.M., Kotko A.V., Bogolepov V.A., Savenko A.F., Zolotarenko A.D., Firstov S.A., Skorokhod V.V. Synthesis of carbon nanostructures in gaseous and liquid me-dium. NATO Security through Science Series A: Chemistry and Biology. 2007: 199. https://doi.org/10.1007/978-1-4020-5514-0_25

Lavrenko V.A., Shchur D.V., Zolotarenko A.D., Zolotarenko A.D. Electrochemical Synthesis of Ammonium Persulfate (NH4)2S2O8 Using Oxygen-Depolarized Porous Silver Cathodes Produced by Powder Metallurgy Methods. Powder Metall. Met. Ceram. 2019. 57(9): 596. https://doi.org/10.1007/s11106-019-00021-y

Schur D.V., Zaginaichenko S.Y., Zolotarenko A.D., Veziroglu T.N. Solubility and transformation of fullerene C60 molecule. NATO Science for Peace and Security Series C: Environmental Security. 2008. PartF2: 85. https://doi.org/10.1007/978-1-4020-8898-8_7

Zolotarenko O.D., Rudakova O.P., Kartel M.T., Kaleniuk H.O., Zolotarenko A.D., Schur D.V., Tarasenko Y.O. The mechanism of forming carbon nanostructures by electric arc-method. Surface. 2020. 12(27): 263. [in Ukrainian]. https://doi.org/10.15407/Surface.2020.12.263

Akhanova N.Y., Schur D.V., Gavrylyuk N.A., Gabdullin M.T., Anikina N.S., Zolotarenko An.D., Krivush-chenko O.Ya., Zolotarenko Ol.D., Gorelov B.M., Erlanuli E., Batrishev D.G. Use of absorption spectra for iden-tification of endometallofullerenes. Him. Fiz. Tehnol. Poverhni. 2020. 11(3): 429. [in Ukrainian]. https://doi.org/10.15407/hftp11.03.429

Matysina Z.A., Zolotarenko Ol.D., Rudakova O.P. , Akhanova N. Y. , Pomytkin A.P., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V. Iron in Endometallofullerenes. Prog. Phys. Met. 2022. 23(3): 510.

Akhanova N.Ye., Shchur D.V., Pomytkin A.P., Zolotarenko Al.D., Zolotarenko An.D., Gavrylyuk N.A., Ualkhanova M, Bo W., Ang D. Gadolinium Endofullerenes. J. Nanosci. Nanotechnol. 2021. 21(4): 2435. https://doi.org/10.1166/jnn.2021.18970

Zolotarenko O.D., Rudakova E.P., Zolotarenko A.D., Akhanova N.Y., Ualkhanova M.N., Shchur D.V., Gab-dullin M.T., Gavrylyuk N.A., Myronenko T.V., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V., Tarasenko Yu.O., Havryliuk O.O. Platinum-containing carbon nanostructures for the creation of electrically conductive ceramics using 3D printing of CJP technology. Him. Fiz. Tehnol. Poverhni. 2022. 13(3): 259. https://doi.org/10.15407/hftp13.03.259

Schur D.V., Zolotarenko A.D., Zolotarenko A.D., Zolotarenko O.P., Chimbai M.V. Analysis and identification of platinum-containing nanoproducts of plasma-chemical synthesis in a gaseous medium. Phys. Sci. Technol. 2019. 6(1-2): 46. https://doi.org/10.26577/phst-2019-1-p9

Zolotarenko A.D., Zolotarenko A.D., Lavrenko V.A., Zaginaichenko S.Y., Shvachko N.A., Milto O.V., Tarasen-ko Y.A. Encapsulated ferromagnetic nanoparticles in carbon shells. In Carbon Nanomaterials in Clean Energy Hydrogen Systems-II. 2011: 127.  https://doi.org/10.1007/978-94-007-0899-0_10

Akhanova N., Orazbayev S., Ualkhanova M., Perekos A.Y., Dubovoy A.G., Schur D.V., Zolotarenko Al.D., Zolotarenko An.D., Gavrylyuk N.A., Gabdullin M.T. Ramazanov T.S. The Influence of Magnetic Field on Synthesis of Iron Nanoparticles. J. Nanosci. Nanotechnol. Appl. 2019. 3(3): 1.

Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Chymbai M.V., Tarasenko Yu.O., Zagorulko I. V., Zolotarenko A. D. Electric Conductive Composites Based on Metal Oxides and Carbon Nanostructures. Metallofiz. Noveishie Tekhnol. 2021. 43(10): 1417.

Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Sultangazina M., Gavrylyuk N.A., Chymbai M.V., Zolotarenko A.D., Zagorulko I.V., Tarasenko Yu.O. Plasmochemical Synthesis of Platinum-Containing Carbon Nanostructures Suitable for CJP 3D-Printing. Metallofiz. Noveishie Tekhnol. 2022. 44(3): 343.

Miracle D.B., Donaldson S.L. Composites: A textbook on ASM. (ASM International: The Materials Information Company, 2001).

Arsecularatne J.A., Zhang L.C. Carbon Nanotube Reinforced Ceramic Composites and their Performance. Recent Pat. Nanotechnol. 2007. 1(3): 176. https://doi.org/10.2174/187221007782360411

Eder D. Carbon Nanotube−Inorganic Hybrids. Chem. Rev. 2010. 110(3): 1348. https://doi.org/10.1021/cr800433k

Fan Yu., Wang L., Li J., Li J., Sun S., Chen F., Chen L., Jiang W. Preparation and electrical properties of graphene nanosheet/Al2O3 composites. Carbon. 2010. 48(6): 1743. https://doi.org/10.1016/j.carbon.2010.01.017

Bondar A.M., Iordache I. Carbon/ceramic composites designed for electrical application. J. Optoelectron. Adv. Mater. 2006. 8(2): 631. https://doi.org/10.1109/ESTC.2006.280089

Su F-H., Zhang Z.-Z., Wang K., Jiang W. Men X.-H., Liu W.-M. Friction and wear properties of carbon fabric composites filled with nano-Al2O3 and nano-Si3N4. Composites Part A. 2006. 37(9): 1351. https://doi.org/10.1016/j.compositesa.2005.08.017

Fényi B., Hegman N., Wéber F., Arató P., Balázsi Cs. DC conductivity of silicon nitride based carbon-ceramic composites. Process. Appl. Ceram. 2007. 1(1-2): 57. https://doi.org/10.2298/PAC0702057F

Zheng G-B., Sano H., Uchiyama Y. A carbon nanotube-enhanced SiC coating for the oxidation protection of C/C composite materials. Composites Part B: Engineering. 2011. 42(8): 2158. (2011). https://doi.org/10.1016/j.compositesb.2011.05.012

Guo S., Sivakumar R., Kitazawa H., Kagawa Y. Electrical Properties of Silica-Based Nanocomposites with Multiwall Carbon Nanotubes. J. Am. Ceram. Soc. 2007. 90(5): 1667. https://doi.org/10.1111/j.1551-2916.2007.01636.x

Yu J., Fan J., Cheng B. Dye-sensitized solar cells based on anatase TiO2 hollow spheres/carbon nanotube composite films. J. Power Sources. 2011. 196(18): 7891. https://doi.org/10.1016/j.jpowsour.2011.05.014

Ivanshina O.Yu., Tamm M.E., Gerasimova E.V., Kochugaeva M.P., Kirikova M.N., Savilov S.V., Yashina L.V. Synthesis and electrocatalytic activity of platinum nanoparticle/carbon nanotube composites. Inorg. Mater. 2011. 47(6): 618. https://doi.org/10.1134/S0020168511060112

Martínez C., Canle M.L., Fernández M.I., Santaballa J.A., Faria J. Kinetics and mechanism of aqueous degradation of carbamazepine by heterogeneous photocatalysis using nanocrystalline TiO2, ZnO and multi-walled carbon nanotubes-anatase composites. Applied Catalysis B: Environmental. 2011. 102(3): 563. https://doi.org/10.1016/j.apcatb.2010.12.039

Li X.L., Li C., Zhang Y., Chu D.P., Milne W.I., Fan H.J. Atomic Layer Deposition of ZnO on Multi-walled Carbon Nanotubes and Its Use for Synthesis of CNT-ZnO Heterostructures. Nanoscale Res. Lett. 2010. 5: 1836. https://doi.org/10.1007/s11671-010-9721-z

Jiang L., Gao L. Carbon nanotubes-metal nitride composites: a new class of nanocomposites with enhanced electrical properties. J. Mater. Chem. 2005. 15(2): 260. https://doi.org/10.1039/B409682G

Shi S.-L., Liang J. Electronic transport properties of multiwall carbon nanotubes/yttria-stabilized zirconia composites. J. Appl. Phys. 2007. 101: 023708. https://doi.org/10.1063/1.2430700

Wu Z.-S., Zhou G., Yin L.-C., Ren W., Li F., Cheng H.-M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy. 2012. 1(1):107. https://doi.org/10.1016/j.nanoen.2011.11.001

Butyagin P.Yu., Streletskii A.N. The kinetics and energy balance of mechanochemical transformations. Phys. Solid State. 2005. 47: 856. https://doi.org/10.1134/1.1924845




DOI: https://doi.org/10.15407/hftp13.04.415

Copyright (©) 2022 Ol. D Zolotarenk, E. P. Rudakova, N. Y. Akhanova, An. D. Zolotarenko, D. V. Shchur, M. T. Gabdullin, M. N. Ualkhanova, N. A. Gavrylyuk, M. V. Chymbai, T. V. Myronenko, I. V. Zagorulko, A. D. Zolotarenko, O. O. Havryliuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.