Chemistry, Physics and Technology of Surface, 2022, 13 (4), 476-488.

An influence of the adsorbed molecules layer on the localized surface plasmons in the spherical metallic nanoparticles



DOI: https://doi.org/10.15407/hftp13.04.476

N. A. Smirnova, A. V. Korotun, L. M. Titov

Abstract


An influence of the adsorbed molecules layer on the optical characteristics of the spherical metallic nanoparticles has been studied in the work. In order to do this one considers the additional term which takes into account the scattering of electrons at the interface between metal and adsorbate. The analytical expressions for the frequency dependences for the parameter of coherence loss due to the scattering at the interface “metal – adsorbed layer” have been obtained. It has been found that the presence of the adsorbed molecules results in the electron scattering anisotropy, and, hence, in the anisotropy of the optic response of such systems. The result of the indicated anisotropy is the appearance of the additional maximum in the infrared part of the spectrum in the frequency dependences for the optical characteristics. An evolution of the frequency dependences for the components of the polarizability tensor and the absorption cross-section and scattering cross-section for the two-layer spherical nanoparticles of the type “metal – adsorbate” under the variation of their geometrical parameters has been analyzed. It has been shown that the weak maximum of the real, imaginary parts and the module of the transverse component of the polarizability tensor and the absorption and scattering cross-sections in the infrared part of the spectrum appears due to inducing of the local density of the states by adsorbate. The reason of the shift of the maxima of the absorption cross-section and scattering cross-section for the nanoparticles of the constant sizes with the cores of different metals has been found. It has been demonstrated the existence of the small-scale oscillations at the frequency dependences for the components of the polarizability tensor and at the absorption and scattering cross-sections, caused by an oscillating contribution of the surface electron scattering. The dependence of the location and the value of the maximum of the absorption cross-section for the particle “metal – adsorbate” with the constant geometrical parameters and content on the dielectric permittivity of the medium, in which the nanoparticle is situated, has been proved.


Keywords


composite nanoparticle; adsorbate; polarizability; absorption cross-section; scattering cross-section; surface plasmonic resonance; local density of the states

Full Text:

PDF

References


Valsecchi C., Brolo A.G. Periodic metallic nanostructures as plasmonic chemical sensors. Langmuir. 2013. 29(19): 5638. https://doi.org/10.1021/la400085r

Schatz G.C., Van Duyne R.P. Electromagnetic mechanism of surface-enhanced spectroscopy. In: Handbook of Vibrational Spectroscopy. (John Wiley & Sons, Ltd., 2006). https://doi.org/10.1002/0470027320.s0601

Moskovits M. Surface-enhanced Raman spectroscopy: a brief retrospective. J. Raman Spectrosc. 2005. 36(6-7): 485. https://doi.org/10.1002/jrs.1362

Barnes W.L., Dereux A., Ebbesen T.W. Surface plasmon subwavelength optics. Nature. 2003. 424(6950): 824830. https://doi.org/10.1038/nature01937

Noginov M.A., Zhu G., Belgrave A.M., Bakker R., Shalaev V.M., Narimanov E.E., Stout S., Herz E., Suteewong T., Wiesner U. Demonstration of a spaser-based nanolaser. Nature. 2009. 460(7259): 1110. https://doi.org/10.1038/nature08318

Knight M.W., Sobhani H., Nordlander P., Halas N.J. Photodetection with active optical antennas. Science. 2011. 332(6030): 702. https://doi.org/10.1126/science.1203056

Kakavelakis G., Vangelidis I., Heuer-Jungemann A., Kanaras A.G., Lidorikis E., Stratakis E., Kymakis E. Plasmonic Backscattering Effect in High-Efficient Organic Photovoltaic Devices. Adv. Energy Mater. 2016. 6(2): 1501640. https://doi.org/10.1002/aenm.201501640

Foerster B., Joplin A., Kaefer K., Celiksoy S., Link S., Sönnichsen C. Chemical Interface Damping Depends on Electrons Reaching the Surface. ACS Nano. 2017. 11(3): 2886. https://doi.org/10.1021/acsnano.6b08010

Collins S.S., Wei X., McKenzie T.G., Funston A.M., Mulvaney P. Single Gold Nanorod Charge Modulation in an Ion Gel Device. Nano Lett. 2016. 16(11): 6863. https://doi.org/10.1021/acs.nanolett.6b02696

Byers C.P., Hoener B.S., Chang W.S., Link S., Landes C.F. Single-Particle Plasmon Voltammetry (Sppv) for Detecting Anion Adsorption. Nano Lett. 2016. 16(4): 2314. https://doi.org/10.1021/acs.nanolett.5b04990

Christopher P., Xin H., Linic S. Visible-Light-Enhanced Catalytic Oxidation Reactions on Plasmonic Silver Nanostructures. Nat. Chem. 2011. 3: 467. https://doi.org/10.1038/nchem.1032

Mubeen S., Lee J., Singh N., Krämer S., Stucky G.D., Moskovits M. An Autonomous Photosynthetic Device in which All Charge Carriers Derive from Surface Plasmons. Nat. Nanotechnol. 2013. 8: 247. https://doi.org/10.1038/nnano.2013.18

Naik G.V., Dionne J.A. Photon Upconversion with Hot Carriers in Plasmonic Systems. Appl. Phys. Lett. 2015. 107(13): 133902. https://doi.org/10.1063/1.4932127

Mitsudome T., Kaneda K. Gold Nanoparticle Catalysts for Selective Hydrogenations. Green Chem. 2013. 15(10): 2636. https://doi.org/10.1039/c3gc41360h

Brongersma M.L., Halas N.J., Nordlander P. Plasmon-Induced Hot Carrier Science and Technology. Nat. Nanotechnol. 2015. 10: 25. https://doi.org/10.1038/nnano.2014.311

Wu K., Chen J., Mcbride J.R., Lian T. Efficient Hot-Electron transfer by a Plasmon-Induced Interfacial Charge-Transfer Transition. Science. 2015. 349(6248): 632. https://doi.org/10.1126/science.aac5443

Hartland G.V. Optical Studies of Dynamics in Noble Metal Nanostructures. Chem. Rev. 2011. 111(6): 3858. https://doi.org/10.1021/cr1002547

Hoggard A., Wang L.-Y., Ma L., Fang Y., You G., Olson J., Liu Z., Chang W.-S., Ajayan P.M., Link S. Using the Plasmon Linewidth To Calculate the Time and Efficiency of Electron Transfer between Gold Nanorods and Graphene. ACS Nano. 2013. 7(12): 11209. https://doi.org/10.1021/nn404985h

Olson J., Dominguez-Medina S., Hoggard A., Wang L.-Y., Chang W.-S., Link S. Optical Characterization of Single Plasmonic Nanoparticles. Chem. Soc. Rev. 2015. 44(1): 40. https://doi.org/10.1039/C4CS00131A

Munechika K., Smith J.M., Chen Y., Ginger D.S. Plasmon Line Widths of Single Silver Nanoprisms as a Function of Particle Size and Plasmon Peak Position. J. Phys. Chem. C. 2007. 111(51): 18906. https://doi.org/10.1021/jp076099e

Kreibig U., Michael V. Optical Properties of Metal Clusters. (Berlin: Springer, 1995). https://doi.org/10.1007/978-3-662-09109-8

Charle K.-P., Frank F., Schulze W. The Optical Properties of Silver Microcrystallites in Dependence on Size and the Influence of the Matrix Environment. Berichte der Bunsengesellschaft für physikalische Chemie. 1984. 88(4): 350. https://doi.org/10.1002/bbpc.19840880407

Lohse S.E., Murphy C.J. The Quest for Shape Control: A History of Gold Nanorod Synthesis. Chem. Mater. 2013. 25(8): 1250. https://doi.org/10.1021/cm303708p

Klar T., Perner M., Grosse S., Von Plessen G., Spirkl W., Feldmann J. Surface-Plasmon Resonances in Single Metallic Nanoparticles. Phys. Rev. Lett. 1998. 80(19): 4249. https://doi.org/10.1103/PhysRevLett.80.4249

Hövel H., Fritz S., Hilger A., Kreibig U., Vollmer M. Width of Cluster Plasmon Resonances: Bulk Dielectric Functions and Chemical Interface Damping. Phys. Rev. B. 1993. 48(24): 18178. https://doi.org/10.1103/PhysRevB.48.18178

Kusar P., Gruber C., Hohenau A., Krenn J.R. Measurement and Reduction of Damping in Plasmonic Nanowires. Nano Lett. 2012. 12(2): 661. https://doi.org/10.1021/nl203452d

Persson J. Polarizability of Small Spherical Metal Particles: Influence of the Matrix Environment. Surf. Sci. 1993. 281(1−2): 153. https://doi.org/10.1016/0039-6028(93)90865-H

Korotun A.V., Koval' A.A., Reva V.I., Titov I.N. Optical Absorption of a Composite Based on Bimetallic Nanoparticles. Classical Approach. Phys. Met. Metall. 2019. 120(11): 1040. https://doi.org/10.1134/S0031918X19090059

Korotun A.V., Koval A.O., Pogosov V.V. Optical parameters of bimetallic nanospheres. Ukr. J. Phys. 2021. 66(6): 518. https://doi.org/10.15407/ujpe66.6.518

Korotun A.V., Koval' A.A., Reva V.I. Absorption of Electromagnetic Radiation by Oxide-Coated Spherical Metal Nanoparticles. J. Appl. Spectrosc. 2019. 86(4): 606. https://doi.org/10.1007/s10812-019-00866-6

Korotun A.V., Koval' A.A. Optical Properties of Spherical Metal Nanoparticles Coated with an Oxide Layer. Opt. Spectrosc. 2019. 127(6): 1161. https://doi.org/10.1134/S0030400X19120117

Korotun A.V., Koval' A.A., Titov I.N. Optical Absorption of a Composite Based on Bilayer Metal-Dielectric Spherical Nanoparticles. J. Appl. Spectrosc. 2020. 87(2): 240. https://doi.org/10.1007/s10812-020-00991-7

Grigorchuk N.I., Tomchuk P.M. Optical and transport properties of spheroidal metal nanoparticles with account for the surface effect. Phys. Rev. B. 2011. 84(8): 085448. https://doi.org/10.1103/PhysRevB.84.085448

Korotun A.V., Pavlyshche N.I. Cross Sections for Absorption and Scattering of Electromagnetic Radiation by Ensembles of Metal Nanoparticles of Different Shapes. Phys. Met. Metall. 2021. 122(10): 941. https://doi.org/10.1134/S0031918X21100057

Pinchuk A., von Plessen G., Kreibig U. Influence of interband electronic transitions on the optical absorption in metallic nanoparticles. J. Phys. D: Appl. Phys. 2004. 37(22): 3133. https://doi.org/10.1088/0022-3727/37/22/012

Peng S., McMahon J.M., Schatz G.C., Gray S.K., Sun Y. Reversing the size-dependence of surface plasmon resonances. Proc. Natl. Acad. Sci. USA. 2010. 107(33): 14530. https://doi.org/10.1073/pnas.1007524107




DOI: https://doi.org/10.15407/hftp13.04.476

Copyright (©) 2022 N. A. Smirnova, A. V. Korotun, L. M. Titov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.