Chemistry, Physics and Technology of Surface, 2022, 13 (4), 489-497.

Bactericidal metal-containing zeolites



DOI: https://doi.org/10.15407/hftp13.04.489

V. G. Tsitsishvili, N. M. Dolaberidze, N. A. Mirdzveli, M. O. Nijaradze, Z. S. Amiridze, B. T. Khutsishvili

Abstract


The coronavirus pandemic has increased interest in antibacterial agents containing bioactive metals, for which zeolites are promising carriers. On the other hand, zeolite adsorbents and ion exchangers containing bioactive metals and endowed with bactericidal properties are promising for water treatment and other environmental and medical applications.Silver-, copper-, and zinc-containing microporous materials have been prepared on the base of natural analcime,phillipsite and heulandite from Georgian manifestations using ion-exchange reactions between zeolite microcrystals and a salt of a corresponding transition metal in the solid phase followed by washing with distilled water. Synthesized in such way adsorbent-ion-exchangers are characterized by chemical composition based on the    X-ray energy dispersion spectra, powder X-ray diffraction patterns, Fourier transform infra-red spectra and              low-temperature adsorption-desorption isotherms of N2. Obtained materials remain the zeolite crystal structure and contain 130–230 mg/g of silver, 65–72 mg/g of copper, and 58–86 mg/g of zinc, as compared with modified samples of synthetic type A zeolite containing up to 380 mg/g of silver, 150 mg/g of copper, and 150 mg/g of zinc. Prepared metal-containing materials show bacteriostatic activity against Gram negative bacterium Escherichia coli, Gram positive bacteria Staphylococcus aureus and Bacillus subtilis, fungal pathogenic yeastCandida albicans, and a fungus Aspergilusniger, and natural zeolites enriched with biometals exhibit a synergistic effect – their mixtures have a higher bacteriostatic activity. It is shown that mixtures of copper and zinc forms have a higher activity than the silver-containing form, which is very important from a practical point of view for replacing expensive silver with cheaper copper and zinc. It has been found that the bacteriostatic activity of metal-containing zeolites is determined not only and not so much by the ions of bioactive metals released into the liquid medium, but an important role ininhibiting the growth of microorganisms plays a type of zeolite matrix. Despite the relatively low ion-exchange capacity, heulandite turned out to be a fairly effective matrix for bioactive metals.


Keywords


silver-; copper-; zinc-containing analcime; phillipsite and heulandite; bacteriostatic activity

Full Text:

PDF

References


Dutta P., Wang B. Zeolite-supported silver as antimicrobial agents. Coord. Chem. Rev. 2019. 383: 1. https://doi.org/10.1016/j.ccr.2018.12.014

Tsitsishvili V.G., Dolaberidze N.M., Nijaradze M.O., Mirdzveli N.A., Amiridze Z.S. Bactericidal adsorbents obtained by ion exchange modification of natural phillipsite. Him. Fiz. Tehnol. Poverhni. 2019. 10(4): 327. https://doi.org/10.15407/hftp10.04.327

Díez-Pascual A.M. Antibacterial activity of nanomaterials. Nanomaterials. 2018. 8(6): 359. https://doi.org/10.3390/nano8060359

Wang Y., Yang Y., Shi Y., Song H., Yu C. Antibiotic-free antibacterial strategies enabled bynanomaterials: progress and perspectives. Adv. Mater. 2020. 32(18): e1904106. https://doi.org/10.1002/adma.201904106

Top A., Ülkü S. Silver, zinc, and copper exchange in Na-clinoptilolite and resulting effect on antibacterial activity. Appl. Clay Sci. 2004. 27(1-2): 13. https://doi.org/10.1016/j.clay.2003.12.002

Hrenovic J., Milenkovic J., Ivankovic T., Rajic N. Antibacterial activity of heavy metal-loaded natural zeolite. J. Hazard. Mater. 2012. 201-202(1): 260. https://doi.org/10.1016/j.jhazmat.2011.11.079

Hrenovic J., Milenkovic J., Goic-Barisic I., Rajic N. Antibacterial activity of modified natural zeolite against clinical isolates of Acinetobacterbaumannii. Microporous Mesoporous Mater. 2013. 169(3): 148. https://doi.org/10.1016/j.micromeso.2012.10.026

Demirci S., Ustaoğlu Z., Yılmazer G.A., Sahin F., Baç N. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms. Appl. Biochem. Biotechnol. 2014. 172(3): 1652. https://doi.org/10.1007/s12010-013-0647-7

Milenkovic J., Hrenovic J., Matijasevic D., Niksic D., Rajic N. Bactericidal activity of Cu-, Zn-, and Ag-containing zeolites toward Escherichia coli isolates. Environ. Sci. Pollut. Res. 2017. 24(6): 20273. https://doi.org/10.1007/s11356-017-9643-8

Dolaberidze N., Tsitsishvili V., Khutsishvili B., Mirdzveli N., Nijaradze M., Amiridze Z., Burjanadze M. Silver- and zinc-containing bactericidal phillipsites. New Materials, Compounds and Applications. 2018. 2(3): 247.

Tsitsishvili V., Dolaberidze N., Mirdzveli N., Nijaradze M., Amiridze Z. Properties of bactericidal adsorbents prepared from Georgian natural analcime and phillipsite. Bulletin of the Georgian National Academy of Sciences. 2020. 14(4): 25.

Rossainz-Castro L.G., De la Rosa-Gomez I., Olguín M.T., Alcantara-Díaz D. Comparison between silver- and copper-modified zeolite rich tuffs as microbicidal agents for Escherichia coli and Candida albicans. J. Environ. Manage. 2016. 183(3): 763. https://doi.org/10.1016/j.jenvman.2016.09.034

Jiraroj D., Tungasmita S., Tungasmita D.N. Silver ions and silver nanoparticles in zeolite A composites for antibacterial activity. Powder Technol. 2014. 264(9): 418. https://doi.org/10.1016/j.powtec.2014.05.049

Kwakye-Awuah B., Williams C., Kenward M.A., Radecka I. Antimicrobial action and efficiency of silver-loaded zeolite X. J. Appl. Microbiol. 2008. 104(5): 1516. https://doi.org/10.1111/j.1365-2672.2007.03673.x

Tsitsishvili V., Dolaberidze N., Nijaradze M., Mirdzveli N., Amiridze Z., Sharashenidze T., Gabunia V. Application of Georgian natural analcime for production of ion exchangers. Scientific Collection "InterConf". 2021. 47: 574. https://doi.org/10.51582/interconf.7-8.04.2021.062

Tsitsishvili V., Dolaberidze N., Nijaradze M., Mirdzveli N., Amiridze Z., Khutsishvili B., Virsaladze K., Kapanadze T. Properties of Georgian heulandite-clinoptilolite and its application for production of bactericidal adsorbents. Scientific Collection "InterConf". 2021. 59: 633.

Tsitsishvili V., Dolaberidze N., Mirdzveli N., Nijaradze M., Amiridze Z., Gabunia V., Tsintskaladze G. Hydrothermal transformation of natural analcime and phillipsite. Bulletin of Georgian National Academy of Sciences. 2019. 13(1): 66.

Akhigbe L., Ouki S., Saroj D., Min Lim X. Silver-modified clinoptilolite for the removal of Escherichia coli and heavy metals from aqueous solutions. Environ. Sci. Pollut. Res. 2014. 21(18): 10940. https://doi.org/10.1007/s11356-014-2888-6

Mulley G., Jenkins A.T.A., Waterfield N.R. Inactivation of the antibacterial and cytotoxic properties of silver ions by biologically relevant compounds. PLoS One. 2014. 9(4): e94409. https://doi.org/10.1371/journal.pone.0094409

Navarro C.A., von Bernath D., Jerez C.A. Heavy metal resistance strategies of acidophilic bacteria and their acquisition: Importance for biomining and bioremediation. Biol. Res. 2017. 46(4): 363. https://doi.org/10.4067/S0716-97602013000400008

Copper in drinking-water. Zinc in drinking-water. Background documents for preparation of WHO Guidelines for drinking-water quality. World Health Organization, Geneva, 2003. WHO/SDE/WSH/03.04/88 and 03.04.17.

Zendehdel R., Goli F., Hajibabaei M. Comparing the microbial inhibition of nanofibres with multi-metal ion exchanged nano-zeolite Y in air sampling. J. Appl. Microbiol. 2020. 128(1): 202. https://doi.org/10.1111/jam.14455

Oheix E., Reicher C., Nouali H., Michelin L., Josien L., Daou T.J., Pieuchot L. Rational design and characterisation of novel mono- and bimetallic antibacterial Linde type A zeolite materials. J. Funct. Biomater. 2022. 13: 73. https://doi.org/10.3390/jfb13020073

Tsitsishvili V., Dolaberidze N., Mirdzveli N., Nijaradze M., Amiridze Z. Preparation of bactericidal fillers from Georgian heulandite-clinoptilolite and their application for paper production. II. Bactericidal paper. Scientific Collection "InterConf". 2021. 67: 359. https://doi.org/10.51582/interconf.19-20.07.2021.038




DOI: https://doi.org/10.15407/hftp13.04.489

Copyright (©) 2022 V. G. Tsitsishvili, N. M. Dolaberidze, N. A. Mirdzveli, M. O. Nijaradze, Z. S. Amiridze, B. T. Khutsishvili

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.