Chemistry, Physics and Technology of Surface, 2023, 14 (1), 19-33.

Synthesis and sorption properties of β-cyclodextrin-containing aerosilogel



DOI: https://doi.org/10.15407/hftp14.01.019

L. A. Belyakova, D. Yu. Lyashenko

Abstract


Aromatic organic acids are among the common environmental pollutants that enter the water with washouts from agricultural lands, wastewater from chemical and pharmaceutical industries. Taking into account the high toxicity of aromatic substances, the important task of water purification is the removal of their trace amounts. This problem can be solved by using chemically modified inorganic materials, such as silicas, which have high mechanical, chemical, hydrolytic, and radiation stability. Therefore, they do not lose their sorption capacity during long-term use and do not pollute water with sorbent degradation products.

The purpose of this work is the synthesis of a sorption-active material for removal of toxic aromatic acids by chemical immobilization of β-cyclodextrin functional groups on an aerosilogel (highly dispersed type of amorphous silica).

A β-cyclodextrin-containing aerosilogel was synthesized by two-stage liquid-phase chemical modification of hydroxylated silica surface. Using the methods of IR spectroscopy, spectrophotometry, thermogravimetry, pH metry, low-temperature adsorption-desorption of nitrogen, chemical and elemental analysis of the surface, the surface structure and its quantitative chemical composition, and also parameters of porous structure of initial and chemically modified aerosilogels were determined.

Sorption of benzoic, salicylic and β-resorcylic acids on aerosilogels from aqueous buffer solutions with pH=1 was studied. The insignificant contribution of silanol and aminopropyl groups and complete participation of chemically fixed β-cyclodextrin in the sorption of aromatic acids were proved. The results obtained are analyzed using kinetic models for pseudo-first and pseudo-second order processes, as well as Langmuir and Freundlich models for equilibrium adsorption on homogeneous and heterogeneous surfaces. It has been found that the sorption kinetic processes are well described by a pseudo-first order equation (in the presence of one type of functional groups on the surface) and a pseudo-second order equation for bi- and trifunctional aerosilogels. Experimental results on the equilibrium sorption of aromatic acids on β-cyclodextrin-containing aerosilogel are in good agreement with the Langmuir adsorption equation. This is evidence of decisive contribution of grafted oligosaccharide groups to the sorption of organic acids.

The proposed chemical approach to increasing the sorption activity of aerosilogel can be used to obtain specific chromatographic carriers, as well as inorganic sorbents for the effective removal of small amounts of highly toxic organic substances from water and aqueous solutions.


Keywords


aerosilogel; chemical surface modification; β-cyclodextrin; sorption; aromatic acids; IR spectroscopy; pH metry; derivatography; low-temperature nitrogen adsorption-desorption; spectrophotometry

Full Text:

PDF (Українська)

References


Wang X., Wang Y., Feng L, Liu P., Zhang X. A novel adsorbent based on functionalized three-dimensionally ordered macroporous cross-linked polystyrene for removal of salicylic acid from aqueous solution. Chem. Eng. J. 2012. 203: 251. https://doi.org/10.1016/j.cej.2012.07.034

Yang J., Feng L., Wang J.-X. Preparation of phosphorus based hyper-cross-linked polymers and adsorption of salicylic acid from aqueous solution. J. Mol. Struct. 2020. 1221: 128804. https://doi.org/10.1016/j.molstruc.2020.128804

Huang J., Jin X., Mao J., Yuan B., Deng R., Deng S. Synthesis, characterization and adsorption properties of diethylenetriamine-modified hyper-cross-linked resins for efficient removal of salicylic acid from aqueous solution. J. Hazard. Mater. 2012. 217-218: 406. https://doi.org/10.1016/j.jhazmat.2012.03.053

Fu Z., Huang J. Polar hyper-cross-linked resin with abundant micropores/mesopores and its enhanced adsorption toward salicylic acid: Equilibrium, kinetics, and dynamic operation. Fluid Phase Equilib. 2017. 438: 1. https://doi.org/10.1016/j.fluid.2017.01.025

Zhou F., Man R., Huang J. Hyper-cross-linked polymers functionalized with primary amine and its efficient adsorption of salicylic acid from aqueous solution. The Journal of Chemical Thermodynamics. 2018. 31: 387. https://doi.org/10.1016/j.jct.2018.11.024

Wang X., Li G., Guo D., Zhang Y., Huang J. A novel polar-modified post-cross-linked resin and its enhanced adsorption to salicylic acid: Equilibrium, kinetics and breakthrough studies. J. Colloid Interface Sci. 2016. 470: 1. https://doi.org/10.1016/j.jcis.2016.02.046

Huang J., Wang G., Huang K. Enhanced adsorption of salicylic acid onto a β-naphthol-modified hyper-cross-linked poly(styrene-co-divinylbenzene) resin from aqueous solution. Chem. Eng. J. 2011. 168(2): 715. https://doi.org/10.1016/j.cej.2011.01.065

Xiao G., Wen R., Liu A., He G., Wu D. Adsorption performance of salicylic acid on a novel resin with distinctive double pore structure. J. Hazard. Mater. 2017. 329: 77. https://doi.org/10.1016/j.jhazmat.2017.01.030

Li H., Long R., Tong C., Li T., Liu Y., Shi S. Shell thickness controlled hydrophilic magnetic molecularly imprinted resins for high-efficient extraction of benzoic acids in aqueous samples. Talanta. 2019. 194: 969. https://doi.org/10.1016/j.talanta.2018.10.099

Hu H., Wang X., Li S., Huang J., Deng S. Bisphenol-A modified hyper-cross-linked polystyrene resin for salicylic acid removal from aqueous solution: Adsorption equilibrium, kinetics and breakthrough studies. J. Colloid Interface Sci. 2012. 372(1): 108. https://doi.org/10.1016/j.jcis.2012.01.009

Huang J., Yang L., Wang X., Li H., Chen L., Liu Y.-N. A novel post-cross-linked polystyrene/polyacryldiethylenetriamine (PST_pc/PADETA) interpenetrating polymer networks (IPNs) and its adsorption towards salicylic acid from aqueous solutions. Chem. Eng. J. 2014. 248: 216. https://doi.org/10.1016/j.cej.2014.03.061

Fu Z., He C., Li H., Yan C., Chen L., Huang J., Liu Y.-N. A novel hydrophilic-hydrophobic magnetic interpenetrating polymer networks (IPNs) and its adsorption towards salicylic acid from aqueous solution. Chem. Eng. J. 2015. 279: 250. https://doi.org/10.1016/j.cej.2015.04.146

Chai K., Ji H. Dual functional adsorption of benzoic acid from wastewater by biological-based chitosan grafted β-cyclodextrin. Chem. Eng. J. 2012. 203: 309. https://doi.org/10.1016/j.cej.2012.07.050

González-Ramos K.M., Fernández-Reyes B., Román, F.R., Hernández-Maldonado A.J. A hierarchical porous carbon - Mn+[FAU] (Mn+=Ni2+ or Cu2+) adsorbent: Synthesis, characterization and adsorption of salicylic acid from water. Microporous Mesoporous Mater. 2014. 200: 225. https://doi.org/10.1016/j.micromeso.2014.08.055

Dai J., Xiao X., Duan S., Liu J., He J., Lei J., Wang L. Synthesis of novel microporous nanocomposites of ZIF-8 on multiwalled carbon nanotubes for adsorptive removing benzoic acid from water. Chem. Eng. J. 2018. 331: 64. https://doi.org/10.1016/j.cej.2017.08.090

Kong L., Xiong Y., Sun L., Tian S., Xu X., Zhao C., Liu H. Sorption performance and mechanism of a sludge-derived char as porous carbon-based hybrid adsorbent for benzene derivatives in aqueous solution. J. Hazard. Mater. 2014. 274: 205. https://doi.org/10.1016/j.jhazmat.2014.04.014

Arshadi M., Mousavinia F., Abdolmaleki M.K., Amiri M.J., Khalafi-Nezhad A. Removal of salicylic acid as an emerging contaminant by a polar nano-dendritic adsorbent from aqueous media. J. Colloid Interface Sci. 2017. 493: 138. https://doi.org/10.1016/j.jcis.2017.01.017

Cabrera-Lafaurie W.A., Román F.R., Hernández-Maldonado A.J. Transition metal modified and partially calcined inorganic-organic pillared clays for the adsorption of salicylic acid, clofibric acid, carbamazepine, and caffeine from water. J. Colloid Interface Sci. 2012. 386: 381. https://doi.org/10.1016/j.jcis.2012.07.037

Cabrera-Lafaurie W.A., Román F.R., Hernández-Maldonado A.J. Removal of salicylic acid and carbamazepine from aqueous solution with Y-zeolites modified with extraframework transition metal and surfactant cations: Equilibrium and fixed-bed adsorption. J. Environ. Chem. Eng. 2014. 2: 899. https://doi.org/10.1016/j.jece.2014.02.008

Rakić V., Rajić N., Daković A., Auroux A. The adsorption of salicylic acid, acetylsalicylic acid and atenolol from aqueous solutions onto natural zeolites and clays: Clinoptilolite, bentonite and kaolin. Microporous Mesoporous Mater. 2013. 166: 185. https://doi.org/10.1016/j.micromeso.2012.04.049

Arshadi M., Mousavinia F., Amiri M.J., Faraji A.R. Adsorption of methyl orange and salicylic acid on a nano-transition metal composite: Kinetics, thermodynamic and electrochemical studies. J. Colloid Interface Sci. 2016. 483: 1181. https://doi.org/10.1016/j.jcis.2016.08.032

SadeghiPouya E., Abolghasemi H., Assar M., Hashemi S.J., Salehpour A., Foroughi-dahr M. Theoretical and experimental studies of benzoic acid batch adsorption dynamics using vermiculite-based adsorbent. Chem. Eng. Res. Des. 2015. 93: 800. https://doi.org/10.1016/j.cherd.2014.07.016

Xin X., Si W., Yao Z., Feng R., Du B., Yan L., Wei Q. Adsorption of benzoic acid from aqueous solution by three kinds of modified bentonites. J. Colloid Interface Sci. 2011. 359: 499. https://doi.org/10.1016/j.jcis.2011.04.044

Shen T., Gao M., Zang W., Ding F., Wang J. Architecting organosilica nanosheets for regenerable cost-effective organics adsorbents. Chem. Eng. J. 2018. 331: 211. https://doi.org/10.1016/j.cej.2017.08.084

Pérez Molina B.C., Johannsen M. Adsorption equilibria of benzoic acid on silica gel from supercritical carbon dioxide. J. Supercrit. Fluids. 2010. 54(2): 237. https://doi.org/10.1016/j.supflu.2010.05.015

Belyakova L.A., Besarab L.N., Roik N.V., Lyashenko D.Yu., Vlasova N.N., Golovkova L.P., Chuiko A.A. Designing of the centers for adsorption of bile acids on a silica surface. J. Colloid Interface Sci. 2006. 294(1): 11. https://doi.org/10.1016/j.jcis.2005.06.081

Smith A.L. Applied Infrared Spectroscopy. (New York: John Wiley and Sons, 1982).

Vansant E.F., Van der Voort P., Vrancken K.C. Characterization and Chemical Modification of the Silica Surface. (Amsterdam: Elsevier, 1995). https://doi.org/10.1016/S0167-2991(06)81508-9

Bellamy L.J. Advances in Infrared Group Frequencies. (London: Methuen, 1968).

Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998. 98(5): 1743. https://doi.org/10.1021/cr970022c

Belyakova L.A., Belyakov V.N., Vasilyuk S.L., Shvets A.N. Influence of grafted β-cyclodextrin on the sorbing activity of silica gel to ions of toxic metals. Dopov. Nac. akad. nauk Ukr. 2016. 3: 69. [in Russian]. https://doi.org/10.15407/dopovidi2016.03.069

Laskorin B.N., Strelko V.V., Strazhesko D.N., Denisov V.I. Silica Gel Based Sorbents in Radiochemistry. (Moscow: Atomizdat, 1977). [in Russian].

Steed J.W., Atwood J.L. Supramolecular Chemistry. (Chichester-New York-Weinheim-Brisbano-Singapore-Toronto: John Wiley&Sons, 2000).

Lehn J.-M. Supramolecular Chemistry. Concepts and Perspectives. (Weinheim - New York-Basel-Cambridge-Tokyo: VCH Verlagsgesellschaft, 1995).

Dodziuk H. Cyclodextrins and Their Complexes. (Weinheim: Wiley-VCH GmbH&Co, 2006). https://doi.org/10.1002/3527608982

Belyakova L.A. Encapsulation of benzene carboxylic acids using cyclodextrins. Him. Fiz. Tehnol. Poverhni. 2021. 12(1): 40. [in Ukrainian]. https://doi.org/10.15407/hftp12.01.040




DOI: https://doi.org/10.15407/hftp14.01.019

Copyright (©) 2023 L. A. Belyakova, D. Yu. Lyashenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.