Chemistry, Physics and Technology of Surface, 2023, 14 (2), 143-158.

Nanostructured composites with precipitated silica – Ni crystallites coated by char with carbonized starch



DOI: https://doi.org/10.15407/hftp14.02.143

V. M. Gun'ko, B. Charmas, J. Skubiszewska–Zięba

Abstract


Hybrid carbons/metals/metal (metalloid) oxides composites could be effective adsorbents for low– and high–molecular weight compounds, polar and nonpolar, gaseous and liquid. The presence of metal nanocrystallites and carbon nanostructures could provide catalytic properties in redox reactions. For more effective use of hybrid composites, their morphological, structural, textural, and adsorption characteristics should be appropriate for target applications and, therefore, well controlled. Therefore, the aim of this study was to synthesize carbon/metal/silica nanostructured composites with varied content of metal (Ni) to control the mentioned characteristics. Precipitated silica Sipernat 50 was selected as a substrate. Potato starch was used as a carbon precursor. Nickel nitrate (Ni(NO3)2·6H2O) of varied amounts was used as a precursor of Ni nanoparticles reduced upon the starch carbonization. After the starch carbonization and Ni reduction, a set of C/Ni/silica samples was studied using atomic force microscopy, X–ray diffraction, X–ray fluorescence spectroscopy, nitrogen and p-nitrophenol adsorption, thermogravimetry, and Raman spectroscopy. The presence of nickel phase results in the formation of smaller but denser packed char nanoparticles. Estimation of possible contribution of pores accessible for nitrogen molecules in silica globules and outer surface of carbon/Ni particles suggests that the carbon phase is porous that provides a significant part of the specific surface area of the composites. Amorphous silica and char phases are characterized by the presence of certain nuclei of radius (R) < 1 nm and 2 nm < R < 10 nm estimated from the XRD patterns using full peak profile analysis with a self–consistent regularization procedure. Ni crystallites are of several sizes, since particle size distributions include two–three peaks in the range of 3–13 nm in radius. The Raman spectra show that the main changes with increasing Ni content are characteristic to sp3 carbon structures (D line) in contrast to the sp2 structures (G line). The pore size distributions (both differential and incremental) demonstrate complex changes in a broad size range due to increasing Ni content in composites. As a whole, changes in the Ni content in nanostructured C/Ni/silica composites allow one to control the morphological, structural, and textural characteristics of the whole materials.

Keywords


precipitated silica; starch; nickel nitrate; Ni nanocrystallites; char–covered Ni nanoparticles; structural characteristics

Full Text:

PDF

References


Somasundaran P. (Ed.) Encyclopedia of Surface and Colloid Science. Third Edition. (Boca Raton: CRC Press, 2015). https://doi.org/10.1081/E-ESCS3

Ahuja S. (Ed.) Separation Science and Technology, V. 15. (Amsterdam: Elsevier, 2022).

Hussain C.M. (Ed.) Handbook of Polymer Nanocomposites for Industrial Applications. (Amsterdam: Elsevier, 2021).

Ahmad A., Kumar R., Jawaid M. (Eds.) Emerging Techniques for Treatment of Toxic Metals from Wastewater. (Amsterdam: Elsevier, 2022).

Singh S., Kumar P., Mondal D.P. (Eds.) Advanced Ceramics for Versatile Interdisciplinary Applications. (Amsterdam: Elsevier, 2022).

Ngu L.H. Carbon Capture Technologies. (Amsterdam: Elsevier, 2022). https://doi.org/10.1016/B978-0-323-90386-8.00028-0

Yang R.T. Adsorbents: Fundamentals and Applications. (New York: Wiley, 2003). https://doi.org/10.1002/047144409X

Birdi K.S. (Ed.) Handbook of Surface and Colloid Chemistry. Third edition. (Boca Raton: CRC Press, 2009). https://doi.org/10.1201/9781420007206.ch1

Ullmann's Encyclopedia of Industrial Chemistry. (Weinheim: Wiley-VCH, 2008).

Lu K. Nanoparticulate Materials. Synthesis, Characterization, and Processing. (Hoboken, New Jersey: John Wiley & Sons, Inc., 2013).

Moreno-Piraján J.C., Giraldo-Gutierrez L., Gómez-Granados F. Porous Materials Theory and Its Application for Environmental Remediation. (Cham: Springer Nature, 2021). https://doi.org/10.1007/978-3-030-65991-2

Rousseau R.W. Handbook of Separation Process Technology. (New York: John Wiley & Sons, 1987).

Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013). https://doi.org/10.1201/b14202

Leboda R. Carbon-mineral adsorbents - new type of sorbents. Part I. The methods of preparation. Mater. Chem. Phys. 1992. 31: 243. Part II. Surface properties and methods of their modification Mater. Chem. Phys. 1993. 34: 123. https://doi.org/10.1016/0254-0584(93)90202-W

Chan Z., Miao F., Xiao Z., Juan H., Hongbing Z. Effect of doping levels on the pore structure of carbon nanotube/silica xerogel composites. Mater. Lett. 2007. 61(3): 644. https://doi.org/10.1016/j.matlet.2006.05.074

Lavorgna M., Romeo V., Martone A., Zarrelli M., Giordano M., Buonocore G.G., Qu M.Z., Fei G.X., Xia H.S. Silanization and silica enrichment of multiwalled carbon nanotubes: Synergistic effects on the thermal-mechanical properties of epoxy nanocomposites. Eur. Polym. J. 2013. 49(2): 428. https://doi.org/10.1016/j.eurpolymj.2012.10.003

Othman R.N., Kinloch I.A., Wilkinson A.N. Synthesis and characterisation of silica-carbon nanotube hybrid microparticles and their effect on the electrical properties of poly(vinyl alcohol) composites. Carbon. 2013. 60: 461. https://doi.org/10.1016/j.carbon.2013.04.062

Choi S., Kim K., Nam J., Shim S.E. Synthesis of silica-coated graphite by enolization of polyvinylpyrrolidone and its thermal and electrical conductivity in polymer composites. Carbon. 2013. 60: 254. https://doi.org/10.1016/j.carbon.2013.04.034

Chu Y.-H., Yamagishi M., Wang Z.-M., Kanoh H., Hirotsu T. Adsorption characteristics of nanoporous carbon-silica composites synthesized from graphite oxide by a mechanochemical intercalation method. J. Colloid Interface Sci. 2007. 312(2): 186. https://doi.org/10.1016/j.jcis.2007.04.016

Wang Z.-M., Shishibori K., Hoshinoo K., Kanoh H., Hirotsu T. Examination of synthesis conditions for graphite-derived nanoporous carbon-silica composites. Carbon. 2006. 44: 2479. https://doi.org/10.1016/j.carbon.2006.05.018

Kumagai S., Ishizawa H., Aoki Y., Toida Y. Molded micro- and mesoporous carbon/silica composite from rice husk and beet sugar. Chem. Eng. J. 2010. 156(2): 270. https://doi.org/10.1016/j.cej.2009.10.016

Tso C.Y., Chao C.Y.H. Activated carbon, silica-gel and calcium chloride composite adsorbents for energy efficient solar adsorption cooling and dehumidification systems. Int. J. Refrig. 2012. 35(6): 1626. https://doi.org/10.1016/j.ijrefrig.2012.05.007

Ye L., Ji Z.-H., Han W.-J., Hu J.-D., Zhao T. Synthesis and characterization of silica/carbon composite aerogels. J. Am. Ceram. Soc. 2010. 93(4): 1156. https://doi.org/10.1111/j.1551-2916.2009.03525.x

Furtado A.M.B., Wang Y., LeVan M.D. Carbon silica composites for sulfur dioxide and ammonia adsorption. Microporous Mesoporous Mater. 2013. 165: 48. https://doi.org/10.1016/j.micromeso.2012.07.032

Glover T.G., LeVan M.D. Carbon-silica composite adsorbent: Sensitivity to synthesis conditions. Microporous Mesoporous Mater. 2009. 118(1-3): 21. https://doi.org/10.1016/j.micromeso.2008.08.010

Valle-Vigón P., Sevilla M., Fuertes A.B. Carboxyl-functionalized mesoporous silica-carbon composites as highly efficient adsorbents in liquid phase. Microporous Mesoporous Mater. 2013. 176: 78. https://doi.org/10.1016/j.micromeso.2013.03.049

Santa C.F., Jaber M., Guth J.L., Sierra L. Synthesis of texturally biphasic mesoporous carbon-silica composites and carbons. Microporous Mesoporous Mater. 2013. 173: 53. https://doi.org/10.1016/j.micromeso.2013.01.033

Lua A.C., Shen Y. Preparation and characterization of polyimide-silica composite membranes and their derived carbon-silica composite membranes for gas separation. Chem. Eng. J. 2013. 220: 441. https://doi.org/10.1016/j.cej.2012.11.140

Sanchez F., Ince C. Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites. Compos. Sci. Technol. 2009. 69(7-8): 1310. https://doi.org/10.1016/j.compscitech.2009.03.006

Zhou X., Shi T. One-pot hydrothermal synthesis of a mesoporous SiO2-graphene hybrid with tunable surface area and pore size. Appl. Surf. Sci. 2012. 259: 566. https://doi.org/10.1016/j.apsusc.2012.06.113

Tang J., Wang T., Sun X., Hu Y., Xie Q., Guo Y., Xue H., He J. Novel synthesis of reduced graphene oxide-ordered mesoporous carbon composites and their application in electrocatalysis. Electrochim. Acta. 2013. 90: 53. https://doi.org/10.1016/j.electacta.2012.11.099

Manocha L.M., Manocha S., Patel K.B., Glogar P. Oxidation behaviour of carbon/carbon composites impregnated with silica and silicon oxycarbide. Carbon. 2000. 38(10): 1481. https://doi.org/10.1016/S0008-6223(00)00003-8

Nandan D., Sreenivasulu P., Sivakumar Konathala L.N., Kumar M., Viswanadham N. Acid functionalized carbon-silica composite and its application for solketal production. Microporous Mesoporous Mater. 2013. 179: 182. https://doi.org/10.1016/j.micromeso.2013.06.004

Xu H., Zhang H., Huang Y., Wang Y. Porous carbon/silica composite monoliths derived from resorcinol-formaldehyde/TEOS. J. Non-Crystal. Solid. 2010. 356(20-22): 971. https://doi.org/10.1016/j.jnoncrysol.2010.02.001

Charmas B. Characterization of porosity and thermal properties of Ni-doped carbosils obtained by starch gelation. Adsorpt. Sci. Technol. 2015. 33(6-8): 539. https://doi.org/10.1260/0263-6174.33.6-8.539

Herath A., Navarathna C., Warren S., Perez F., Pittman C.U. Jr., Mlsna T.E. Iron/titanium oxide-biochar (Fe2TiO5/BC): A versatile adsorbent/photocatalyst for aqueous Cr(VI), Pb2+, F- and methylene blue. J. Colloid Interface Sci. 2022. 614: 603. https://doi.org/10.1016/j.jcis.2022.01.067

Wang J., Han Q., Wang K., Li S., Luo W., Liang Q., Zhong J., Ding M. Recent advances in development of functional magnetic adsorbents for selective separation of proteins/peptides. Talanta. 2023. 253: 123919. https://doi.org/10.1016/j.talanta.2022.123919

Nirenjan Shenoy P.N., Arjun N.M., Senthil Kumar P., Sree Hari A.B., Nithya K., Asha Sathish P. Recycled mesoporous magnetic composites with high surface area derived from plastic and de-oiled sludge wastes: An empirical comparison on their competitive performance for toxic Cr (VI) removal. Chemosphere. 2022. 292: 133375. https://doi.org/10.1016/j.chemosphere.2021.133375

Salama A., Abou-Zeid R.E., Ionic chitosan/silica nanocomposite as efficient adsorbent for organic dyes. Inter. J. Bio. Macromol. 2021. 188: 404. https://doi.org/10.1016/j.ijbiomac.2021.08.021

Meti P., Mahadik D.B., Lee K.-Y., Wang Q., Kanamori K., Gong Y.-D., Park H.-H. Overview of organic-inorganic hybrid silica aerogels: Progress and perspectives. Mater. Des. 2022. 222: 111091. https://doi.org/10.1016/j.matdes.2022.111091

Juela D.M. Promising adsorptive materials derived from agricultural and industrial wastes for antibiotic removal: A comprehensive review. Sep. Purif. Technol. 2022. 284: 120286. https://doi.org/10.1016/j.seppur.2021.120286

Ounphikul B., Chantarasombat N., Hunt A.J., Ngernyen Y. A new low-cost carbon-silica composite adsorbent from a by-product of the sugar industry. Mater. Today: Proc. 2022. 51(5): 1884. https://doi.org/10.1016/j.matpr.2021.10.113

El Kurdi R., Chebl M., Sillanpää M., El-Rassy H., Patra D. Chitosan oligosaccharide/silica nanoparticles hybrid porous gel for mercury adsorption and detection. Materials Today Commun. 2021. 28: 102707. https://doi.org/10.1016/j.mtcomm.2021.102707

Ighalo J.O., Omoarukhe F.O., Ojukwu V.E., Iwuozor K.O., Igwegbe C.A. Cost of adsorbent preparation and usage in wastewater treatment: A review. Cleaner. Chem. Eng. 2022. 3: 100042. https://doi.org/10.1016/j.clce.2022.100042

Gun'ko V.M., Matkovsky A.K., Charmas B., Skubiszewska-Zięba J., Pasieczna-Patkowska S. Carbon-silica gel adsorbents: effects of matrix structure and carbon content on adsorption of polar and nonpolar adsorbates. J. Therm. Anal. Calorim. 2017. 128(3): 1683. https://doi.org/10.1007/s10973-017-6097-7

Leboda R., Turov V.V., Charmas B., Skubiszewska-Zięba J., Gun'ko V.M. Surface properties of mesoporous carbon-silica gel adsorbents. J. Colloid Interface Sci. 2000. 223(1): 112. https://doi.org/10.1006/jcis.1999.6629

Gun'ko V.M., Leboda R., Skubiszewska-Zięba J., Rynkowski J. Silica gel modified due to pyrolysis of acetylacetone or metal (Ti, Cr, Co, Ni, Zn, Zr) acetylacetonates. J. Colloid Interface Sci. 2000. 231(1): 13. https://doi.org/10.1006/jcis.2000.7119

Gun'ko V.M., Leboda R., Turov V.V., Villiéras F., Skubiszewska-Zięba J., Chodorowski S., Marciniak M. Structural and energetic nonuniformities of pyrocarbon-mineral adsorbents. J. Colloid Interface Sci. 2001. 238(2): 340. https://doi.org/10.1006/jcis.2001.7512

Gun'ko V.M., Leboda R., Skubiszewska-Zięba J., Turov V.V., Kowalczyk P. Structure of silica gel Si-60 and pyrocarbon/silica gel adsorbents thermally and hydrothermally treated. Langmuir. 2001. 17(11): 3148. https://doi.org/10.1021/la001094t

Gun'ko V.M., Leboda R., Pokrovskiy V.A., Charmas B., Turov V.V., Ryczkowski J. A study of the organic carbon content of silica gel carbonised by pyrolysis of alcohols. J. Anal. Appl. Pyrolysis. 2001. 60(2): 233.  https://doi.org/10.1016/S0165-2370(00)00204-7

Skubiszewska-Zięba J., Leboda R., Seledets O., Gun'ko V.M. Effect of preparation conditions of carbon-silica adsorbents based on mesoporous silica gel Si-100 and carbonised glucose on their pore structure. Colloids Surf. A. 2003. 231(1-3): 39. https://doi.org/10.1016/j.colsurfa.2003.07.002

Gun'ko V.M., Skubiszewska-Zięba J., Leboda R., Turov V.V. Impact of thermal and hydrothermal treatments on structural characteristics of silica Gel Si-40 and carbon/silica gel adsorbents. Colloids Surf. A. 2004. 235(1-3): 101. https://doi.org/10.1016/j.colsurfa.2004.01.012

Seledets O., Gun'ko V.M., Skubiszewska-Zięba J., Leboda R., Musiatowicz M., Podkoscielny P., Dabrowski A. Structural and energetic heterogeneities of pyrocarbon/silica gel systems and their adsorption properties. Appl. Surf. Sci. 2005. 240(1-4): 222. https://doi.org/10.1016/j.apsusc.2004.06.141

Gun'ko V.M., Seledets O., Skubiszewska-Zięba J., Zarko V.I., Leboda R., Janusz W., Chibowski S. Phosphorus-containing carbon deposits on silica gel Si-100. Microporous Mesoporous Mater. 2005. 87(2): 133. https://doi.org/10.1016/j.micromeso.2005.06.044

Blitz J.P., Gun'ko V.M. (Eds.) Surface Chemistry in Biomedical and Environmental Science. NATO Science Series II: Mathematics, Physics and Chemistry. V. 228. (Dordrecht: Springer, 2006). https://doi.org/10.1007/1-4020-4741-X

Skubiszewska-Zięba J., Charmas B., Leboda R., Gun'ko V.M. Carbon-mineral adsorbents with a diatomaceous earth/perlite matrix modified by carbon deposits. Microporous Mesoporous Mater. 2012. 156: 209. https://doi.org/10.1016/j.micromeso.2012.02.038

Tomaszewski W., Gun'ko V.M., Skubiszewska-Zięba J., Charmas B., Leboda R. Influence of carbon deposits and subsequent silylation of silica gel on sorption efficiency of explosive nitramines. Colloids Surf. A. 2015. 468: 76. https://doi.org/10.1016/j.colsurfa.2014.11.013

Tomaszewski W., Gun'ko V.M. Evaluation of adsorption and desorption steps in solid-phase extraction of explosives using carbon/silica gel nanocomposites. J. Sep. Sci. 2015. 38(14): 2488. https://doi.org/10.1002/jssc.201500171

Gun'ko V.M., Matkovsky A.K., Charmas B., Skubiszewska-Zięba J., Pasieczna-Patkowska S. Carbon-silica gel adsorbents: effects of matrix structure and carbon content on adsorption of polar and nonpolar adsorbates. J. Therm. Anal. Calorim. 2017. 128(3): 1683. https://doi.org/10.1007/s10973-017-6097-7

Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. 2nd ed. (London: Academic Press, 1982).

Adamson A.W., Gast A.P. Physical Chemistry of Surface. 6th ed. (New York: Wiley, 1997).

Gun'ko V.M. Textural characteristics of composite adsorbents analyzed with density functional theory and self-consistent regularization procedure. Him. Fiz. Tehnol. Poverhni. 2020. 11(2): 163. https://doi.org/10.15407/hftp11.02.163

Gun'ko V.M. Various methods to describe the morphological and textural characteristics of various materials. Him. Fiz. Tehnol. Poverhni. 2018. 9(4): 317. https://doi.org/10.15407/hftp09.04.317

Gun'ko V.M. Morphological and textural features of various materials composed of porous or nonporous nanoparticles differently packed in secondary structures. Appl. Surf. Sci. 2021. 569: 151117. https://doi.org/10.1016/j.apsusc.2021.151117

Ravikovitch P.I., Neimark A.V. Density functional theory model of adsorption on amorphous and microporous silica materials. Langmuir. 2006. 22(26): 11171. https://doi.org/10.1021/la0616146

Gun'ko V.M. Nano/meso/macroporous materials characterization affected by experimental conditions and features of the used methods. Him. Fiz. Tehnol. Poverhni. 2020. 11(1): 5. https://doi.org/10.15407/hftp11.01.005

Gun'ko V.M. Polymer adsorbents vs. functionalized oxides and carbons: particulate morphology and textural and surface characterization. Polymers. 2021. 13(1249): 1. https://doi.org/10.3390/polym13081249

ImageJ. Version 1.53t. 2022. https://imagej.nih.gov/ij/, https://imagej.nih.gov/ij/plugins/granulometry.html.

Gun'ko V.M., Oranska O.I., Paientko V.V., Sulym I.Ya. Particulate morphology of nanostructured materials. Him. Fiz. Tehnol. Poverhni. 2020. 11(3): 368. https://doi.org/10.15407/hftp11.03.368

Gun'ko V.M., Meikle S.T., Kozynchenko O.P., Tennison S.R., Ehrburger-Dolle F., Morfin I., Mikhalovsky S.V. Comparative characterization of carbon and polymer adsorbents by SAXS and nitrogen adsorption methods. J. Phys. Chem. C. 2011. 115(21): 10727. https://doi.org/10.1021/jp201835r

Gun'ko V.M., Kozynchenko O.P., Tennison S.R., Leboda R., Skubiszewska-Zięba J., Mikhalovsky S.V. Comparative study of nanopores in activated carbons by HRTEM and adsorption methods. Carbon. 2012. 50(9): 3146. https://doi.org/10.1016/j.carbon.2011.10.009

Gun'ko V.M., Turov V.V., Pakhlov E.M., Krupska T.V., Charmas B. Effect of water content on the characteristics of hydro-compacted nanosilica. Appl. Surf. Sci. 2018. 459: 171. https://doi.org/10.1016/j.apsusc.2018.07.213

Kamegawa K., Yoshida H. A method for measuring surface area of carbon of carbon-coated silica gel. Bull. Chem. Soc. Jpn. 1990. 63(12): 3683. https://doi.org/10.1246/bcsj.63.3683

Álvarez-Torrellas S., Martin-Martinez M., Gomes H.T., Ovejero G., García J. Enhancement of p-nitrophenol adsorption capacity through N2-thermal-based treatment of activated carbons. Appl. Surf. Sci. 2017. 414: 424. https://doi.org/10.1016/j.apsusc.2017.04.054




DOI: https://doi.org/10.15407/hftp14.02.143

Copyright (©) 2023 V. M. Gun'ko, B. Charmas, J. Skubiszewska–Zięba

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.