Nanostructured composites with precipitated silica – Ni crystallites coated by char with carbonized starch
DOI: https://doi.org/10.15407/hftp14.02.143
Abstract
Keywords
References
Somasundaran P. (Ed.) Encyclopedia of Surface and Colloid Science. Third Edition. (Boca Raton: CRC Press, 2015). https://doi.org/10.1081/E-ESCS3
Ahuja S. (Ed.) Separation Science and Technology, V. 15. (Amsterdam: Elsevier, 2022).
Hussain C.M. (Ed.) Handbook of Polymer Nanocomposites for Industrial Applications. (Amsterdam: Elsevier, 2021).
Ahmad A., Kumar R., Jawaid M. (Eds.) Emerging Techniques for Treatment of Toxic Metals from Wastewater. (Amsterdam: Elsevier, 2022).
Singh S., Kumar P., Mondal D.P. (Eds.) Advanced Ceramics for Versatile Interdisciplinary Applications. (Amsterdam: Elsevier, 2022).
Ngu L.H. Carbon Capture Technologies. (Amsterdam: Elsevier, 2022). https://doi.org/10.1016/B978-0-323-90386-8.00028-0
Yang R.T. Adsorbents: Fundamentals and Applications. (New York: Wiley, 2003). https://doi.org/10.1002/047144409X
Birdi K.S. (Ed.) Handbook of Surface and Colloid Chemistry. Third edition. (Boca Raton: CRC Press, 2009). https://doi.org/10.1201/9781420007206.ch1
Ullmann's Encyclopedia of Industrial Chemistry. (Weinheim: Wiley-VCH, 2008).
Lu K. Nanoparticulate Materials. Synthesis, Characterization, and Processing. (Hoboken, New Jersey: John Wiley & Sons, Inc., 2013).
Moreno-Piraján J.C., Giraldo-Gutierrez L., Gómez-Granados F. Porous Materials Theory and Its Application for Environmental Remediation. (Cham: Springer Nature, 2021). https://doi.org/10.1007/978-3-030-65991-2
Rousseau R.W. Handbook of Separation Process Technology. (New York: John Wiley & Sons, 1987).
Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013). https://doi.org/10.1201/b14202
Leboda R. Carbon-mineral adsorbents - new type of sorbents. Part I. The methods of preparation. Mater. Chem. Phys. 1992. 31: 243. Part II. Surface properties and methods of their modification Mater. Chem. Phys. 1993. 34: 123. https://doi.org/10.1016/0254-0584(93)90202-W
Chan Z., Miao F., Xiao Z., Juan H., Hongbing Z. Effect of doping levels on the pore structure of carbon nanotube/silica xerogel composites. Mater. Lett. 2007. 61(3): 644. https://doi.org/10.1016/j.matlet.2006.05.074
Lavorgna M., Romeo V., Martone A., Zarrelli M., Giordano M., Buonocore G.G., Qu M.Z., Fei G.X., Xia H.S. Silanization and silica enrichment of multiwalled carbon nanotubes: Synergistic effects on the thermal-mechanical properties of epoxy nanocomposites. Eur. Polym. J. 2013. 49(2): 428. https://doi.org/10.1016/j.eurpolymj.2012.10.003
Othman R.N., Kinloch I.A., Wilkinson A.N. Synthesis and characterisation of silica-carbon nanotube hybrid microparticles and their effect on the electrical properties of poly(vinyl alcohol) composites. Carbon. 2013. 60: 461. https://doi.org/10.1016/j.carbon.2013.04.062
Choi S., Kim K., Nam J., Shim S.E. Synthesis of silica-coated graphite by enolization of polyvinylpyrrolidone and its thermal and electrical conductivity in polymer composites. Carbon. 2013. 60: 254. https://doi.org/10.1016/j.carbon.2013.04.034
Chu Y.-H., Yamagishi M., Wang Z.-M., Kanoh H., Hirotsu T. Adsorption characteristics of nanoporous carbon-silica composites synthesized from graphite oxide by a mechanochemical intercalation method. J. Colloid Interface Sci. 2007. 312(2): 186. https://doi.org/10.1016/j.jcis.2007.04.016
Wang Z.-M., Shishibori K., Hoshinoo K., Kanoh H., Hirotsu T. Examination of synthesis conditions for graphite-derived nanoporous carbon-silica composites. Carbon. 2006. 44: 2479. https://doi.org/10.1016/j.carbon.2006.05.018
Kumagai S., Ishizawa H., Aoki Y., Toida Y. Molded micro- and mesoporous carbon/silica composite from rice husk and beet sugar. Chem. Eng. J. 2010. 156(2): 270. https://doi.org/10.1016/j.cej.2009.10.016
Tso C.Y., Chao C.Y.H. Activated carbon, silica-gel and calcium chloride composite adsorbents for energy efficient solar adsorption cooling and dehumidification systems. Int. J. Refrig. 2012. 35(6): 1626. https://doi.org/10.1016/j.ijrefrig.2012.05.007
Ye L., Ji Z.-H., Han W.-J., Hu J.-D., Zhao T. Synthesis and characterization of silica/carbon composite aerogels. J. Am. Ceram. Soc. 2010. 93(4): 1156. https://doi.org/10.1111/j.1551-2916.2009.03525.x
Furtado A.M.B., Wang Y., LeVan M.D. Carbon silica composites for sulfur dioxide and ammonia adsorption. Microporous Mesoporous Mater. 2013. 165: 48. https://doi.org/10.1016/j.micromeso.2012.07.032
Glover T.G., LeVan M.D. Carbon-silica composite adsorbent: Sensitivity to synthesis conditions. Microporous Mesoporous Mater. 2009. 118(1-3): 21. https://doi.org/10.1016/j.micromeso.2008.08.010
Valle-Vigón P., Sevilla M., Fuertes A.B. Carboxyl-functionalized mesoporous silica-carbon composites as highly efficient adsorbents in liquid phase. Microporous Mesoporous Mater. 2013. 176: 78. https://doi.org/10.1016/j.micromeso.2013.03.049
Santa C.F., Jaber M., Guth J.L., Sierra L. Synthesis of texturally biphasic mesoporous carbon-silica composites and carbons. Microporous Mesoporous Mater. 2013. 173: 53. https://doi.org/10.1016/j.micromeso.2013.01.033
Lua A.C., Shen Y. Preparation and characterization of polyimide-silica composite membranes and their derived carbon-silica composite membranes for gas separation. Chem. Eng. J. 2013. 220: 441. https://doi.org/10.1016/j.cej.2012.11.140
Sanchez F., Ince C. Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites. Compos. Sci. Technol. 2009. 69(7-8): 1310. https://doi.org/10.1016/j.compscitech.2009.03.006
Zhou X., Shi T. One-pot hydrothermal synthesis of a mesoporous SiO2-graphene hybrid with tunable surface area and pore size. Appl. Surf. Sci. 2012. 259: 566. https://doi.org/10.1016/j.apsusc.2012.06.113
Tang J., Wang T., Sun X., Hu Y., Xie Q., Guo Y., Xue H., He J. Novel synthesis of reduced graphene oxide-ordered mesoporous carbon composites and their application in electrocatalysis. Electrochim. Acta. 2013. 90: 53. https://doi.org/10.1016/j.electacta.2012.11.099
Manocha L.M., Manocha S., Patel K.B., Glogar P. Oxidation behaviour of carbon/carbon composites impregnated with silica and silicon oxycarbide. Carbon. 2000. 38(10): 1481. https://doi.org/10.1016/S0008-6223(00)00003-8
Nandan D., Sreenivasulu P., Sivakumar Konathala L.N., Kumar M., Viswanadham N. Acid functionalized carbon-silica composite and its application for solketal production. Microporous Mesoporous Mater. 2013. 179: 182. https://doi.org/10.1016/j.micromeso.2013.06.004
Xu H., Zhang H., Huang Y., Wang Y. Porous carbon/silica composite monoliths derived from resorcinol-formaldehyde/TEOS. J. Non-Crystal. Solid. 2010. 356(20-22): 971. https://doi.org/10.1016/j.jnoncrysol.2010.02.001
Charmas B. Characterization of porosity and thermal properties of Ni-doped carbosils obtained by starch gelation. Adsorpt. Sci. Technol. 2015. 33(6-8): 539. https://doi.org/10.1260/0263-6174.33.6-8.539
Herath A., Navarathna C., Warren S., Perez F., Pittman C.U. Jr., Mlsna T.E. Iron/titanium oxide-biochar (Fe2TiO5/BC): A versatile adsorbent/photocatalyst for aqueous Cr(VI), Pb2+, F- and methylene blue. J. Colloid Interface Sci. 2022. 614: 603. https://doi.org/10.1016/j.jcis.2022.01.067
Wang J., Han Q., Wang K., Li S., Luo W., Liang Q., Zhong J., Ding M. Recent advances in development of functional magnetic adsorbents for selective separation of proteins/peptides. Talanta. 2023. 253: 123919. https://doi.org/10.1016/j.talanta.2022.123919
Nirenjan Shenoy P.N., Arjun N.M., Senthil Kumar P., Sree Hari A.B., Nithya K., Asha Sathish P. Recycled mesoporous magnetic composites with high surface area derived from plastic and de-oiled sludge wastes: An empirical comparison on their competitive performance for toxic Cr (VI) removal. Chemosphere. 2022. 292: 133375. https://doi.org/10.1016/j.chemosphere.2021.133375
Salama A., Abou-Zeid R.E., Ionic chitosan/silica nanocomposite as efficient adsorbent for organic dyes. Inter. J. Bio. Macromol. 2021. 188: 404. https://doi.org/10.1016/j.ijbiomac.2021.08.021
Meti P., Mahadik D.B., Lee K.-Y., Wang Q., Kanamori K., Gong Y.-D., Park H.-H. Overview of organic-inorganic hybrid silica aerogels: Progress and perspectives. Mater. Des. 2022. 222: 111091. https://doi.org/10.1016/j.matdes.2022.111091
Juela D.M. Promising adsorptive materials derived from agricultural and industrial wastes for antibiotic removal: A comprehensive review. Sep. Purif. Technol. 2022. 284: 120286. https://doi.org/10.1016/j.seppur.2021.120286
Ounphikul B., Chantarasombat N., Hunt A.J., Ngernyen Y. A new low-cost carbon-silica composite adsorbent from a by-product of the sugar industry. Mater. Today: Proc. 2022. 51(5): 1884. https://doi.org/10.1016/j.matpr.2021.10.113
El Kurdi R., Chebl M., Sillanpää M., El-Rassy H., Patra D. Chitosan oligosaccharide/silica nanoparticles hybrid porous gel for mercury adsorption and detection. Materials Today Commun. 2021. 28: 102707. https://doi.org/10.1016/j.mtcomm.2021.102707
Ighalo J.O., Omoarukhe F.O., Ojukwu V.E., Iwuozor K.O., Igwegbe C.A. Cost of adsorbent preparation and usage in wastewater treatment: A review. Cleaner. Chem. Eng. 2022. 3: 100042. https://doi.org/10.1016/j.clce.2022.100042
Gun'ko V.M., Matkovsky A.K., Charmas B., Skubiszewska-Zięba J., Pasieczna-Patkowska S. Carbon-silica gel adsorbents: effects of matrix structure and carbon content on adsorption of polar and nonpolar adsorbates. J. Therm. Anal. Calorim. 2017. 128(3): 1683. https://doi.org/10.1007/s10973-017-6097-7
Leboda R., Turov V.V., Charmas B., Skubiszewska-Zięba J., Gun'ko V.M. Surface properties of mesoporous carbon-silica gel adsorbents. J. Colloid Interface Sci. 2000. 223(1): 112. https://doi.org/10.1006/jcis.1999.6629
Gun'ko V.M., Leboda R., Skubiszewska-Zięba J., Rynkowski J. Silica gel modified due to pyrolysis of acetylacetone or metal (Ti, Cr, Co, Ni, Zn, Zr) acetylacetonates. J. Colloid Interface Sci. 2000. 231(1): 13. https://doi.org/10.1006/jcis.2000.7119
Gun'ko V.M., Leboda R., Turov V.V., Villiéras F., Skubiszewska-Zięba J., Chodorowski S., Marciniak M. Structural and energetic nonuniformities of pyrocarbon-mineral adsorbents. J. Colloid Interface Sci. 2001. 238(2): 340. https://doi.org/10.1006/jcis.2001.7512
Gun'ko V.M., Leboda R., Skubiszewska-Zięba J., Turov V.V., Kowalczyk P. Structure of silica gel Si-60 and pyrocarbon/silica gel adsorbents thermally and hydrothermally treated. Langmuir. 2001. 17(11): 3148. https://doi.org/10.1021/la001094t
Gun'ko V.M., Leboda R., Pokrovskiy V.A., Charmas B., Turov V.V., Ryczkowski J. A study of the organic carbon content of silica gel carbonised by pyrolysis of alcohols. J. Anal. Appl. Pyrolysis. 2001. 60(2): 233. https://doi.org/10.1016/S0165-2370(00)00204-7
Skubiszewska-Zięba J., Leboda R., Seledets O., Gun'ko V.M. Effect of preparation conditions of carbon-silica adsorbents based on mesoporous silica gel Si-100 and carbonised glucose on their pore structure. Colloids Surf. A. 2003. 231(1-3): 39. https://doi.org/10.1016/j.colsurfa.2003.07.002
Gun'ko V.M., Skubiszewska-Zięba J., Leboda R., Turov V.V. Impact of thermal and hydrothermal treatments on structural characteristics of silica Gel Si-40 and carbon/silica gel adsorbents. Colloids Surf. A. 2004. 235(1-3): 101. https://doi.org/10.1016/j.colsurfa.2004.01.012
Seledets O., Gun'ko V.M., Skubiszewska-Zięba J., Leboda R., Musiatowicz M., Podkoscielny P., Dabrowski A. Structural and energetic heterogeneities of pyrocarbon/silica gel systems and their adsorption properties. Appl. Surf. Sci. 2005. 240(1-4): 222. https://doi.org/10.1016/j.apsusc.2004.06.141
Gun'ko V.M., Seledets O., Skubiszewska-Zięba J., Zarko V.I., Leboda R., Janusz W., Chibowski S. Phosphorus-containing carbon deposits on silica gel Si-100. Microporous Mesoporous Mater. 2005. 87(2): 133. https://doi.org/10.1016/j.micromeso.2005.06.044
Blitz J.P., Gun'ko V.M. (Eds.) Surface Chemistry in Biomedical and Environmental Science. NATO Science Series II: Mathematics, Physics and Chemistry. V. 228. (Dordrecht: Springer, 2006). https://doi.org/10.1007/1-4020-4741-X
Skubiszewska-Zięba J., Charmas B., Leboda R., Gun'ko V.M. Carbon-mineral adsorbents with a diatomaceous earth/perlite matrix modified by carbon deposits. Microporous Mesoporous Mater. 2012. 156: 209. https://doi.org/10.1016/j.micromeso.2012.02.038
Tomaszewski W., Gun'ko V.M., Skubiszewska-Zięba J., Charmas B., Leboda R. Influence of carbon deposits and subsequent silylation of silica gel on sorption efficiency of explosive nitramines. Colloids Surf. A. 2015. 468: 76. https://doi.org/10.1016/j.colsurfa.2014.11.013
Tomaszewski W., Gun'ko V.M. Evaluation of adsorption and desorption steps in solid-phase extraction of explosives using carbon/silica gel nanocomposites. J. Sep. Sci. 2015. 38(14): 2488. https://doi.org/10.1002/jssc.201500171
Gun'ko V.M., Matkovsky A.K., Charmas B., Skubiszewska-Zięba J., Pasieczna-Patkowska S. Carbon-silica gel adsorbents: effects of matrix structure and carbon content on adsorption of polar and nonpolar adsorbates. J. Therm. Anal. Calorim. 2017. 128(3): 1683. https://doi.org/10.1007/s10973-017-6097-7
Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. 2nd ed. (London: Academic Press, 1982).
Adamson A.W., Gast A.P. Physical Chemistry of Surface. 6th ed. (New York: Wiley, 1997).
Gun'ko V.M. Textural characteristics of composite adsorbents analyzed with density functional theory and self-consistent regularization procedure. Him. Fiz. Tehnol. Poverhni. 2020. 11(2): 163. https://doi.org/10.15407/hftp11.02.163
Gun'ko V.M. Various methods to describe the morphological and textural characteristics of various materials. Him. Fiz. Tehnol. Poverhni. 2018. 9(4): 317. https://doi.org/10.15407/hftp09.04.317
Gun'ko V.M. Morphological and textural features of various materials composed of porous or nonporous nanoparticles differently packed in secondary structures. Appl. Surf. Sci. 2021. 569: 151117. https://doi.org/10.1016/j.apsusc.2021.151117
Ravikovitch P.I., Neimark A.V. Density functional theory model of adsorption on amorphous and microporous silica materials. Langmuir. 2006. 22(26): 11171. https://doi.org/10.1021/la0616146
Gun'ko V.M. Nano/meso/macroporous materials characterization affected by experimental conditions and features of the used methods. Him. Fiz. Tehnol. Poverhni. 2020. 11(1): 5. https://doi.org/10.15407/hftp11.01.005
Gun'ko V.M. Polymer adsorbents vs. functionalized oxides and carbons: particulate morphology and textural and surface characterization. Polymers. 2021. 13(1249): 1. https://doi.org/10.3390/polym13081249
ImageJ. Version 1.53t. 2022. https://imagej.nih.gov/ij/, https://imagej.nih.gov/ij/plugins/granulometry.html.
Gun'ko V.M., Oranska O.I., Paientko V.V., Sulym I.Ya. Particulate morphology of nanostructured materials. Him. Fiz. Tehnol. Poverhni. 2020. 11(3): 368. https://doi.org/10.15407/hftp11.03.368
Gun'ko V.M., Meikle S.T., Kozynchenko O.P., Tennison S.R., Ehrburger-Dolle F., Morfin I., Mikhalovsky S.V. Comparative characterization of carbon and polymer adsorbents by SAXS and nitrogen adsorption methods. J. Phys. Chem. C. 2011. 115(21): 10727. https://doi.org/10.1021/jp201835r
Gun'ko V.M., Kozynchenko O.P., Tennison S.R., Leboda R., Skubiszewska-Zięba J., Mikhalovsky S.V. Comparative study of nanopores in activated carbons by HRTEM and adsorption methods. Carbon. 2012. 50(9): 3146. https://doi.org/10.1016/j.carbon.2011.10.009
Gun'ko V.M., Turov V.V., Pakhlov E.M., Krupska T.V., Charmas B. Effect of water content on the characteristics of hydro-compacted nanosilica. Appl. Surf. Sci. 2018. 459: 171. https://doi.org/10.1016/j.apsusc.2018.07.213
Kamegawa K., Yoshida H. A method for measuring surface area of carbon of carbon-coated silica gel. Bull. Chem. Soc. Jpn. 1990. 63(12): 3683. https://doi.org/10.1246/bcsj.63.3683
Álvarez-Torrellas S., Martin-Martinez M., Gomes H.T., Ovejero G., García J. Enhancement of p-nitrophenol adsorption capacity through N2-thermal-based treatment of activated carbons. Appl. Surf. Sci. 2017. 414: 424. https://doi.org/10.1016/j.apsusc.2017.04.054
DOI: https://doi.org/10.15407/hftp14.02.143
Copyright (©) 2023 V. M. Gun'ko, B. Charmas, J. Skubiszewska–Zięba
This work is licensed under a Creative Commons Attribution 4.0 International License.