Quantum computations and density functional theory on corrosion inhibition efficiency of BIA, HBT, MBI and PIZ compounds
DOI: https://doi.org/10.15407/hftp14.02.159
Abstract
This study determined the corrosion inhibition levels of benzimidazole (BIA), 1-hydroxybenzotriazole (HBT), methylbenzimidazole (MBI) and 4-phenylimidazole (PIZ). By using simulation, it was possible to have a complete relationship with the experimental work because the results were completely consistent. Density functional theory (DFT) and Monte Carlo simulations were used to calculate several quantum chemical parameters. The molecules are simulated using quantum chemical calculations with Gaussian09 software. Fundamental factors determining the corrosion order of molecules are the highest-energy occupied and lowest-energy unoccupied molecular orbitals (HOMO and LUMO), frontier molecular orbital energy, back donating energy, electrophilicity, nucleophilicity, energy gap ∆E, absolute electronegativity (χ), softness, the number of electrons (∆N) transferred from inhibitors to iron, the dipole moment (μ), the global hardness (η) and the total energy.
Keywords
References
Marinescu M. Recent advances in the use of benzimidazoles as corrosion inhibitors. BMC Chem. 2019. 13(1): 1. https://doi.org/10.1186/s13065-019-0655-y
Mamand D. Theoretical calculations and spectroscopic analysis of gaussian computational examination-NMR, FTIR, UV-Visible, MEP on 2, 4, 6-Nitrophenol. Journal of Physical Chemistry and Functional Materials. 2019. 2(2): 77.
Qadr H.M., Mamand D.M. Molecular structure and density functional theory investigation corrosion inhibitors of some oxadiazoles. J. Bio- Tribo-Corros. 2021. 7(4): 1. https://doi.org/10.1007/s40735-021-00566-9
Qadr H.M. Pressure effects on stopping power of alpha particles in argon gas. Phys. Part. Nucl. Lett. 2021. 18(2): 185. https://doi.org/10.1134/S1547477121020151
Wu Z., Liu Q., Yang P., Chen H., Zhang Q., Li S., Tang Y., Zhang S. Molecular and Morphological Engineering of Organic Electrode Materials for Electrochemical Energy Storage. Electrochem. Energy Rev. 2022. 5(1): 1. https://doi.org/10.1007/s41918-022-00152-8
Hull G. The excavation and analysis of an 18th-century deposit of anatomical remains and chemical apparatus from the rear of the first Ashmolean Museum (now The Museum of the History of Science), Broad Street, Oxford. Post-Medieval Archaeol. 2003. 37(1): 1. https://doi.org/10.1179/pma.2003.002
Ansari F.A., Verma C., Siddiqui Y.S., Ebenso E.E., Quraishi M.A. Volatile corrosion inhibitors for ferrous and non-ferrous metals and alloys: A review. International Journal of Corrosion and Scale Inhibition. 2018. 7(2): 126. https://doi.org/10.17675/2305-6894-2018-7-2-2
Umoren S.A., Solomon M.M. Recent developments on the use of polymers as corrosion inhibitors-a review. The Open Materials Science Journal. 2014. 8(1): 39. https://doi.org/10.2174/1874088X01408010039
Mamand D.M., Awla A.H., Anwer T.M.K., Qadr H.M. Quantum chemical study of heterocyclic organic compounds on the corrosion inhibition. Chimica Techno Acta. 2022. 9(2): 20229203. https://doi.org/10.15826/chimtech.2022.9.2.03
Mamand D.M., Rasul H.H., Omer P.K., Qadr H.M. Theoretical and experimental investigation on ADT organic semiconductor in different solvents. Condensed Matter and Interphases. 2022. 24(2): 227. https://doi.org/10.17308/kcmf.2022.24/9263
Lesar A., Milošev I. Density functional study of the corrosion inhibition properties of 1, 2, 4-triazole and its amino derivatives. Chem. Phys. Lett. 2009. 483(4-6): 198. https://doi.org/10.1016/j.cplett.2009.10.082
Ebenso E.E., Arslan T., Kandemi̇rlı F., Love I., Öğretır C.l., Saracoğlu M., Umoren S.A. Theoretical studies of some sulphonamides as corrosion inhibitors for mild steel in acidic medium. Int. J. Quantum Chem. 2010. 110(14): 2614. https://doi.org/10.1002/qua.22430
Qadr H.M. Effect of ion irradiation on the hardness properties of Zirconium alloy. Annals of the University of Craiova, Physics. 2019. 29: 68.
Qadr H.M. Effect of ion irradiation on the mechanical properties of high and low copper. Atom Indonesia. 2020. 46(1): 47. https://doi.org/10.17146/aij.2020.923
Qadr H.M. A molecular dynamics calculation to cascade damage processes. The Annals of "Dunarea de Jos" University of Galati. Fascicle IX, Metallurgy and Materials Science. 2020. 43(4): 13. https://doi.org/10.35219/mms.2020.4.02
Qadr H.M. Radiation damage and dpa in iron using mcnp5. European J. Mater. Sci. Eng. 2020. 5(3): 109. https://doi.org/10.36868/ejmse.2020.05.03.109
Assad H., Kumar A. Understanding functional group effect on corrosion inhibition efficiency of selected organic compounds. J. Mol. Liq. 2021. 344: 117755. https://doi.org/10.1016/j.molliq.2021.117755
Umoren S., Solomon M. Effect of halide ions on the corrosion inhibition efficiency of different organic species-A review. J. Ind. Eng. Chem. 2015. 21: 81. https://doi.org/10.1016/j.jiec.2014.09.033
Ahmed S.K., Ali W.B., Khadom A.A. Synthesis and investigations of heterocyclic compounds as corrosion inhibitors for mild steel in hydrochloric acid. Int. J. Ind. Chem. 2019. 10(2): 159. https://doi.org/10.1007/s40090-019-0181-8
Qadr H.M. A molecular dynamics study of temperature dependence of the primary state of cascade damage processes. Russ. J. Non-Ferrous Met. 2021. 62(5): 561. https://doi.org/10.3103/S1067821221050096
Frisch A.J.W., USA, 25p gaussian 09W Reference. 2009. 470.
Mamand D.M., Qadr H.M. Comprehensive spectroscopic and optoelectronic properties of bbl organic semiconductor. Prot. Met. Phys. Chem . 2021. 57(5): 943. https://doi.org/10.1134/S207020512105018X
Domingo L.R., Ríos-Gutiérrez M., Pérez P. Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules. 2016. 21(6): 748. https://doi.org/10.3390/molecules21060748
Mamand D. Determination the band gap energy of poly benzimidazobenzophenanthroline and comparison between HF and DFT for three different basis sets. Journal of Physical Chemistry and Functional Materials. 2019. 2(1): 32.
Bulat F.A., Toro-Labbé A., Brinck T., Murray J.S., Politzer P. Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J. Mol. Model. 2010. 16(11): 1679. https://doi.org/10.1007/s00894-010-0692-x
Mamand D.M., Anwer T.M., Qadr H.M., Mussa C.H. Investigation of Spectroscopic and Optoelectronic Properties of Phthalocyanine Molecules. Russ. J. Gen. Chem. 2022. 92(9): 1827. https://doi.org/10.1134/S1070363222090249
V Putz M. Electronegativity and chemical hardness: different patterns in quantum chemistry. Current Physical Chemistry. 2011. 1(2): 111. https://doi.org/10.2174/1877946811101020111
Achak M., Hafidi A., Ouazzani N., Sayadi S., Mandi L. Low cost biosorbent "banana peel" for the removal of phenolic compounds from olive mill wastewater: Kinetic and equilibrium studies. J. Hazard. Mater. 2009. 166(1): 117. https://doi.org/10.1016/j.jhazmat.2008.11.036
Junaedi S., Kadhum A.A.H., Al-Amiery A.A., Mohamad A.B., Takriff M.S. Synthesis and characterization of novel corrosion inhibitor derived from oleic acid: 2-Amino 5-Oleyl-1, 3, 4-Thiadiazol (AOT). Int. J. Electrochem. Sci. 2012. 7(4): 3543.
Li L., Cai T., Wang Z., Zhou Z., Geng Y., Sun T. Study on molecular structure, spectroscopic investigation (IR, Raman and NMR), vibrational assignments and HOMO-LUMO analysis of L-sodium folinate using DFT: A combined experimental and quantum chemical approach. Spectrochim. Acta, Part A. 2014. 120: 106. https://doi.org/10.1016/j.saa.2013.10.011
Gece G., Bilgiç S. A theoretical study on the inhibition efficiencies of some amino acids as corrosion inhibitors of nickel. Corros. Sci. 2010. 52(10): 3435. https://doi.org/10.1016/j.corsci.2010.06.015
Popova A., Christov M., Deligeorgiev T. Influence of the molecular structure on the inhibitor properties of benzimidazole derivatives on mild steel corrosion in 1 M hydrochloric acid. Corrosion. 2003. 59(09): 03090756. https://doi.org/10.5006/1.3277604
Obot I., Kaya S., Kaya C., Tüzün B. Density Functional Theory (DFT) modeling and Monte Carlo simulation assessment of inhibition performance of some carbohydrazide Schiff bases for steel corrosion. Physica E. 2016. 80: 82. https://doi.org/10.1016/j.physe.2016.01.024
Ahamad I., Prasad R., Quraishi M. Thermodynamic, electrochemical and quantum chemical investigation of some Schiff bases as corrosion inhibitors for mild steel in hydrochloric acid solutions. Corros. Sci. 2010. 52(3): 933. https://doi.org/10.1016/j.corsci.2009.11.016
Khaled K., Babić-Samardžija K., Hackerman N. Theoretical study of the structural effects of polymethylene amines on corrosion inhibition of iron in acid solutions. Electrochim. Acta. 2005. 50(12): 2515. https://doi.org/10.1016/j.electacta.2004.10.079
Stoyanova A., Petkova G., Peyerimhoff S. Correlation between the molecular structure and the corrosion inhibiting effect of some pyrophthalone compounds. Chem. Phys. 2002. 279(1): 1. https://doi.org/10.1016/S0301-0104(02)00408-1
Udhayakala P., Rajendiran T., Gunasekaran S. Theoretical approach to the corrosion inhibition efficiency of some pyrimidine derivatives using DFT method. Journal of Computational Methods in Molecular Design. 2012. 2(1): 1.
Qadr H.M., Mamand D. A Review on DPA for computing radiation damage simulation. Journal of Physical Chemistry and Functional Materials. 2022. 5(1): 30. https://doi.org/10.54565/jphcfum.1027393
Parr R.G., Zhou Z. Absolute hardness: unifying concept for identifying shells and subshells in nuclei, atoms, molecules, and metallic clusters. Acc. Chem. Res. 1993. 26(5): 256. https://doi.org/10.1021/ar00029a005
Hamani H., Douadi T., Daoud D., Al-Noaimi M., Rikkouh R.A., Chafaa S. 1-(4-Nitrophenylo-imino)-1-(phenylhydrazono)-propan-2-one as corrosion inhibitor for mild steel in 1 M HCl solution: weight loss, electrochemical, thermodynamic and quantum chemical studies. J. Electroanal. Chem. 2017. 801: 425. https://doi.org/10.1016/j.jelechem.2017.08.031
Khaled K. Studies of iron corrosion inhibition using chemical, electrochemical and computer simulation techniques. Electrochim. Acta. 2010. 55(22): 6523. https://doi.org/10.1016/j.electacta.2010.06.027
Peme T., Olasunkanmi L.O., Bahadur I., Adekunle A.S., Kabanda M.M., Ebenso E.E. Adsorption and corrosion inhibition studies of some selected dyes as corrosion inhibitors for mild steel in acidic medium: gravimetric, electrochemical, quantum chemical studies and synergistic effect with iodide ions. Molecules. 2015. 20(9): 16004. https://doi.org/10.3390/molecules200916004
Mamand D.M., Qadr H.M. Density Functional Theory and Computational Simulation of the Molecular Structure on Corrosion of Carbon Steel in Acidic Media of Some Amino Acids. Russ. J. Phys. Chem. A. 2022. 96(10): 2155. https://doi.org/10.1134/S0036024422100193
Puértolas B., Comesaña‐Hermo M., Besteiro L.V., Vázquez‐González M., Correa‐Duarte M.A. Challenges and Opportunities for Renewable Ammonia Production via Plasmon‐Assisted Photocatalysis. Adv. Energy Mater. 2022. 12(18): 2103909. https://doi.org/10.1002/aenm.202103909
Akkermans R.L.C., Spenley N.A., Robertson S.H. Monte Carlo methods in materials studio. Mol. Simul. 2013. 39(14-15): 1153. https://doi.org/10.1080/08927022.2013.843775
Morales-Gil P., Negrón-Silva G., Romero-Romo M., Ángeles-Chávez C., Palomar-Pardavé M. Corrosion inhibition of pipeline steel grade API 5L X52 immersed in a 1 M H2SO4 aqueous solution using heterocyclic organic molecules. Electrochim. Acta. 2004. 49(26): 4733. https://doi.org/10.1016/j.electacta.2004.05.029
Yan T., Zhang S., Feng L., Qiang Y., Lu L., Fu D., Wen Y., Chen J., Li W., Tan B. Investigation of imidazole derivatives as corrosion inhibitors of copper in sulfuric acid: combination of experimental and theoretical researches. J. Taiwan Inst. Chem. Eng. 2020. 106: 118. https://doi.org/10.1016/j.jtice.2019.10.014
DOI: https://doi.org/10.15407/hftp14.02.159
Copyright (©) 2023 D. M. Mamand, H. M. Qadr
This work is licensed under a Creative Commons Attribution 4.0 International License.