Chemistry, Physics and Technology of Surface, 2011, 2 (1), 3-10.

On the Screening Effects and Plasmon Spectrum in Graphene



E. A. Pashitskii, A. A. Gurin

Abstract


Basing on the method of Green functions for longitudinal (Coulomb) field in three-layer system of media with spatial and frequency dispersion, the screening effects and spectrum of plasma oscillations in graphene are considered. In graphene monolayer the screening of charges comes to their renormalization, so that asymptotic of the screening potential is R-1 whereas the screening in graphene bilayers is characterized by R-3 power asymptotics. The plasma spectrum in graphene mono- and bilayer has a symmetric mode with acoustic dispersion law and an antisymmetric one with root dispersion law.

Full Text:

PDF (Русский)

References


Novoselov K.S., Geim A.K., Morozov S.V. et al. reports electric field effect in atomically thin carbon films // Science. – 2004. – V. 306. P. 666–669.

Novoselov K.S., Geim A.K., Morozov S.V. et al. Two-dimensional gas of massless Dirac fermions in graphene. // Nature. – 2005. – V. 438. – P. 197–200.

Wallace P.R. The band theory of graphite. // Phys. Rev. – 1947. – V. 71, N 9. – P. 622–634.

Morozov S.V., Novoselov K.S., Katsnelsonet M.I. et al. Giant intrinsic carrier mobilities in graphene and its bilayer // Phys. Rev. Lett. – 2008. – V. 100, N 1. – id 016602.

Abergel D.S.L., Apalkov V., Berashevich J. Properties of graphene: A theoretical perspective // Adv. Phys. –2010. – V. 59, N 4. – P. 261–482.

Das Sarma S., Shaffique A., Hwang E.H., E. Rossi Electronic transport in two dimensional graphene. – 2010. – arXiv: 1003.4731v2 [cond-mat.mes-hall].

Gusynin V.P., Sharapov S.G. Unconventional integer quantum hall effect in graphene // Phys. Rev. Lett. – 2005. – V. 95, N 14. – P. 146801 (1–4).

Gusynin V.P. Sharapov S.G. Transport of Dirac quasiparticles in graphene: Hall and optical conductivities // Phys. Rev. B. – 2006. – V. 73, N 24. – P. 245411(1–18).

Gusynin V.P., Miransky V.A., Shara­pov S.G., Shovkovy I.A. Excitonic gap, phase transition, and quantum Hall effect in graphene // Phys. Rev. B. – 2006. – V. 74, N 19. –P. 195429(1–10).

Gusynin V.P., Sharapov S.G., Carbotte J.P. On the universal AC optical background in graphene // New J. Phys. – 2009. – V. 11, N 9. – doi:10.1088/1367-2630/11/9/095013.

Романов Ю.А. К теории характеристических потерь в тонких пленках // ЖЭТФ. –1964. – Т. 47, № 6. – С. 2119–2133.

Пашицкий Э.А., Романов Ю.А. Плазменные волны и сверхпроводимость в квантующих полупроводниковых (полуметаллических) пленках и слоистых структурах // УФЖ. – 1970. – Т. 15, № 10. – С. 1594–1606.

Габович А.М., Ильченко Л.Г., Пашицкий Э.А., Романов Ю.А. Экранирование заряда и фриделевские осцилляции в металлах с различной формой поверхности Ферми // ЖЭТФ. – 1978. – Т. 75, № 1. – С. 249–264.

Ильченко Л.Г., Пашицкий Э.А., Романов Ю.А. Электростатический потенциал зарядов в слоистых системах с пространственной дисперсией // ФТТ. – 1980. – Т. 22, № 9. – С. 2700–2710.

Ильченко Л.Г., Пашицкий Э.А. Взаимодействие зарядов в слоистых системах // ФТТ. – Т. 22, №11. – С. 3395–3401.

Fetter A.L. Electrodynamics of a layred electron gas. II. Periodic array // Ann. Phys. – 1974. –– V. 88. – P. 1–25.

Griffin A., Pindor A.J. Plasmon dispersion relations and the induced electron interaction in oxide superconductors: Numerical results // Phys. Rev. B. – 1989. – V. 39, N 16 – P. 11503–11514.

Келдыш Л.В. Кулоновское взаимодействие в тонких пленках полупроводников и полуметаллов // Письма ЖЭТФ. – 1979. – Т. 29, № 11. – С. 716–719.




Copyright (©) 2011 E. A. Pashitskii, A. A. Gurin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.