Synthesis and electrophysical properties of nanostructured composites NіCо/BaTiO3 and NiCo/TiO2
DOI: https://doi.org/10.15407/hftp14.02.173
Abstract
Nanocomposites containing components with semiconductor, ferroelectric, and ferromagnetic properties have attracted considerable attention of specialists due to the range of possible applications, including catalysis and electrocatalysis, electrode materials for solar and fuel cells, capacitors, electrical and biosensors, anti-corrosion coatings and much more. In recent years, both fundamental and applied interest in this direction of research is due to the possibility of creating a new type of controlled microwave devices and tools.
The aim of the work is to develop methods for the synthesis of nanostructured NiCo composites based on BaTiO3 and TiO2, as well as to find the differences and regularities of their physicochemical properties. Two series of samples with different content of NiCo nanoparticles based on titanium oxide (TiO2) and barium titanate (BaTiO3) were obtained. NiCo particles were obtained by the method of chemical precipitation of nickel and cobalt carbonates in equal parts from a hydrazine hydrate solution at the temperature of 350 K.
The results of X-ray phase analysis indicate the chemical purity of the obtained samples. The values of ε′, ε″ at a frequency of 9 GHz for the NiCo/BaTiO3 system are twice as high compared to NiCo/TiO2 for the corresponding values of the NiCo content, which is due to the higher values of ε′, ε″ of the initial barium titanate. Electrical conductivity of NiCo/BaTiO3 system changes by six orders of magnitude, which indicates the formation of a continuous percolation cluster of metal particles on the surface of dielectric BaTiO3 particles. The composites are heat-resistant up to 630K, as shown by the method of thermogravimetry and pronounced magnetic properties.
The program for calculating frequency dependences of reflection and absorption coefficients in a complex form has been developed. EMF absorption for composites from the radiation frequency and the position of the minima of these characteristics, which agree satisfactorily with the experiment. The obtained composites can be promising components for obtaining composite systems and paints for protection against electromagnetic radiation.
Keywords
References
Arshad M., Khan W., Abushad M., Nadeem M., Husain S., Ansari A., Chakradhary K.V. Correlation between structure, dielectric and multiferroic properties of lead free Ni modified BaTiO3 solid solution. Ceram. Int. 2020. 46(17): 27336. https://doi.org/10.1016/j.ceramint.2020.07.219
Nematollahi R., Ghotbi C., Khorasheh F., Larimi A. Ni-Bi co-doped TiO2 as highly visible light response nano-photocatalyst for CO2 photo-reduction in a batch photo-reactor. J. CO2 Util. 2020. 41: 101289. https://doi.org/10.1016/j.jcou.2020.101289
Ray S.K., Cho J., Hur J. A critical review on strategies for improving efficiency of BaTiO3-based photocatalysts for wastewater treatment. J. Environ. Manage. 2021. 290: 112679. https://doi.org/10.1016/j.jenvman.2021.112679
Sharma M., Gaur A. Fabrication of PVDF/BaTiO3/NiO nanocomposite film as a separator for supercapacitors. J. Energy Storage. 2021. 38: 102500. https://doi.org/10.1016/j.est.2021.102500
Abbas T., Tahir M. Tri-metallic Ni-Co modified reducible TiO2 nanocomposite for boosting H2 production through steam reforming of phenol. Int. J. Hydrogen Energy. 2021. 46(13): 8932. https://doi.org/10.1016/j.ijhydene.2020.12.209
Xie S., Li L., Jin L., Wu Y., Liu H., Qin Q., Wei X., Liu J., Dong L., Li B. Low temperature high activity of M (M = Ce, Fe, Co, Ni) doped M-Mn/TiO2 catalysts for NH3-SCR and in situ DRIFTS for investigating the reaction mechanism. Appl. Surf. Sci. 2020. 515: 146014. https://doi.org/10.1016/j.apsusc.2020.146014
Malathi S., Pakrudheen I., Kalkura S.N., Webster T.J., Balasubramanian S. Disposable biosensors based on metal nanoparticles. Sens. Int. 2022. 3: 100169. https://doi.org/10.1016/j.sintl.2022.100169
Alwarappan S., Nesakumar N., Sun D., Hu T.Y., Li C.-Z. 2D metal carbides and nitrides (MXenes) for sensors and biosensors. Biosens. Bioelectron. 2022. 205: 113943. https://doi.org/10.1016/j.bios.2021.113943
Aroua W., Derbali J., Raaif M., Malek F.A. Design of a new label free active biosensor based on metallic nanoparticles-doped graphene nanodisk platform. Opt. Commun. 2022. 515: 128220. https://doi.org/10.1016/j.optcom.2022.128220
Zhang G., Fürst M., Lengauer W., Zhang J., Ke Z., Xu X., Wu H. On the use of TiO2 in Ti(C,N)-WC/Mo2C-(Ta,Nb)C-Co/Ni cermets. International. Int. J. Refract. Met. Hard Mater. International. 2020. 91: 105274. https://doi.org/10.1016/j.ijrmhm.2020.105274
Kumar A., Kashyap M.K., Kumar S., Kumar P., Asokan K. Effect of dilute co-doping of Ni and Cr on physical properties of TiO2 nanoparticles. Vacuum. 2020. 181: 109658. https://doi.org/10.1016/j.vacuum.2020.109658
Yousefi E., Sharafi S., Irannejad A. The structural, magnetic, and tribological properties of nanocrystalline Fe-Ni permalloy and Fe-Ni-TiO2 composite coatings produced by pulse electro co-deposition. J. Alloys Compd. 2018. 753: 308. https://doi.org/10.1016/j.jallcom.2018.04.232
Gupta P., Mahapatra P.K., Choudhary R.N.P. Investigation on structural and electrical properties of Co and W modified BaTiO3. Ceram. Int., Part B. 2019. 45(17): 22862. https://doi.org/10.1016/j.ceramint.2019.07.329
Hasan M., Akther Hossain A.K.M. Structural, electronic and optical properties of strontium and nickel co-doped BaTiO3: A DFT based study. Comput. Condens. Matter. 2021. 28: 1. https://doi.org/10.1016/j.cocom.2021.e00578
Liu Q., Cao Q., Bi H., Liang C., Yuan K., She W., Yang Y., Che R. CoNi@SiO2 @TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016. 28(3): 486. https://doi.org/10.1002/adma.201503149
Zhao J., Lu Y.J., Ye W.L., Wang L., Liu B., Lv S.S., Chen L.X., Gu J.W. Enhanced wave- absorbing performances of silicone rubber composites by incorporating C-SnO2-MWCNT absorbent with ternary heterostructure. Ceram. Int. 2019. 45(16): 20282. https://doi.org/10.1016/j.ceramint.2019.06.302
Yuan X.Y., Wang R.Q., Huang W.R., Liu Y., Zhang L.F., Kong L., Guo S.W. Lamellar vanadium nitride nanowires encapsulated in graphene for electromagnetic wave absorption. Chem. Eng. J. 2019. 378: 122203. https://doi.org/10.1016/j.cej.2019.122203
Yang X.T., Fan S.G., Li Y., Guo Y.Q., Li Y.G., Ruan K.P., Zhang S.M., Zhang J.L., Kong J., Gu J.W. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Composites, Part A. 2020. 128: 105670. https://doi.org/10.1016/j.compositesa.2019.105670
Xiong J., Xiang Z., Deng B., Wu M., Yu L., Liu Z., Cui E., Pan F., Liu R., Lu W. Engineering compositions and hierarchical yolk-shell structures of NiCo/GC/NPC nanocomposites with excellent electromagnetic wave absorption properties. Appl. Surf. Sci. 2020. 513: 145778. https://doi.org/10.1016/j.apsusc.2020.145778
Deng B., Xiang Z., Xiong J., Liu Z., Yu L., Lu W. Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption. Nano Micro Lett. 2020. 12: 55. https://doi.org/10.1007/s40820-020-0398-2
Li X., Wang Z., Xiang Z., Zhu X., Dong Y., Huang C., Cai L., Lu W. Biconical prisms Ni@C composites derived from metal-organic frameworks with an enhanced electromagnetic wave absorption. Carbon. 2021. 184: 115. https://doi.org/10.1016/j.carbon.2021.08.025
Seiti D., Viana F., Jesus A., De Oliveira A., Charles K.R., Jimenez P., Milton F.P., Eiras J.A., Santos G.M., Garcia D. Synthesis and multiferroic properties of particulate composites resulting from combined size effects of the magnetic and ferroelectric phases. Ceram. Int. 2022. 48(1): 931. https://doi.org/10.1016/j.ceramint.2021.09.177
An F., Zi M., Chen Q., Liu C., Qu K., Jia T., Huang M., Zhong G. Flexible room-temperature multiferroic thin film with multifield tunable coupling properties. Mater. Today Phys. 2022. 23: 100615. https://doi.org/10.1016/j.mtphys.2022.100615
Kossar S., Amiruddin R., Rasool A., Santhosh Kumar M.C., Katragadda N., Mandal P., Ahmed N. Study on ferroelectric polarization induced resistive switching characteristics of neodymium-doped bismuth ferrite thin films for random access memory applications. Curr. Appl. Phys. 2022. 39: 221. https://doi.org/10.1016/j.cap.2022.04.013
Ganyuk L.M., Ignatkov V.D., Makhno S.M., Soroka P.M. Investigation Researching the electrical power of fibrous material. Ukr. J. Phys. 1995. 40(6): 627.
Bogatyrov V.M., Borisenko M.V., Oranska O.I., Galaburda M.V., Makhno S.M., Gorbyk P.P. Synthesis and properties of Ni/C, Co/C, and Cu/C metal-carbon nanocomposites with high metal content. Surface. 2017. 24(9): 136. https://doi.org/10.15407/Surface.2017.09.136
Moskaluk V.O., Saurova T.A. Field theory. (Kyiv: Sikorsky KPU, 2018).
DOI: https://doi.org/10.15407/hftp14.02.173
Copyright (©) 2023 S. M. Makhno, O. M. Lisova, G. M. Gunya, P. P. Gorbyk, M. T. Kartel
This work is licensed under a Creative Commons Attribution 4.0 International License.