Chemistry, Physics and Technology of Surface, 2023, 14 (2), 262-272.

The antiviral activity of cerium and lanthanum nanooxides modified with silver



DOI: https://doi.org/10.15407/hftp14.02.262

M. M. Zahornyi, O. M. Lavrynenko, O. Yu Pavlenko, O. Yu Povnitsa, L. O. Artiukh, K. S. Naumenko, S. D. Zahorodnia, A. I. Ievtushenko

Abstract


Today, the antiviral activity of oxide nanomaterials can be used in the fight against the viral disease COVID-19. It is thought that Ag nanoparticles may bind to the surface glycoprotein of the virus and interfere with the virus’s interaction with epithelial cells, and inhibit virus reproduction by releasing silver ions in the cell. The viruses’ inhibition with RNA (ribonucleic acid) and DNA (deoxyribonucleic acid) genomes by oxide nanocomposites action was presented.

In this research, the surface structure of doped CeO2 (La2O3) was studied by nitrogen adsorption-desorption based on BET method. The silver atom’s existence in CeO2 - Ag0 can facilitate the transport of more holes to the surface and can enhance the optical, antivirus activity. The primary particle size of pure cerium dioxide is 7 nm, for CeO2 - Ag composite at 2 and 4 wt. % of silver is 6.5 and 6.9 nm; for La2O3 - Ag 27 and 35 nm, respectively.

Cell viability was assessed using an MTT (3-(4,5-Dimethylthiazol 2-yl)-2,5-diphenyltetrazolium bromide) assay after NPs (nanoparticles) exposure, since only viable cells have functional mitochondrial dehydrogenase enzymes that can reduce MTT to formazan. Nanoparticles were non-toxic for BHK-21(Syrian hamster kidney), Hep-2 (Human larynx carcinoma), and MDCK (Canine kidney) cells in concentrations of 10 and 100 μg/ml, while cell viability was within 76÷100 %. La2O3 and CeO2, which contained 4 wt. % of Ag at a concentration of 1000 μg/ml had a lower toxic effect: for BHK-21 cells 68 and 76 % of viable cells, respectively; for Hep-2 - 40 and 36 %, for MDCK - 42 and 48 %; La2O3 and CeO2 with 2 and 5 wt. % of Ag at a concentration of 1000 µg/ml were highly toxic. The level of ВНК-21, Нер-2, and MDCK cells viability was in a range of 7 to 37 %.

It has been stated that oxides of cerium and lanthanum have a pronounced virucidal action against the Herpes simplex virus and Influenza A virus by completely inhibiting the development of its cytopathic action. The lanthanum and cerium oxides with 2 and 5 wt. % of silver inhibited the development of the virus’s CPE by more than 5.0 log10 compared to the virus control. The results show that lanthanum and cerium oxides with 2 and 5 wt. % silver have a high virucidal effect against herpes simplex virus type 1. A 1.0÷4.0 log10 reduction in the infectious titer of the Herpes virus synthesized “de novo” in the presence of lanthanum and cerium oxide nanocomposites has been shown.


Keywords


cytotoxicity; adenovirus; Herpes simplex virus; Influenza A virus; antiviral activity; virucidal action; CeO2-Ag; La2O3-Ag

Full Text:

PDF

References


Ahmed S.F., Quadeer A.A., McKay M.R. SARS-CoV-2 T Cell Responses Elicited by COVID-19 Vaccines or Infection Are Expected to Remain Robust against Omicron. Viruses. 2022. 14(1): 79. https://doi.org/10.3390/v14010079

Weiss C., Carriere M., Delogu L.G. Toward nanotechnology-enabled approaches against the COVID-19 Pandemic. ACS Nano. 2020. 14(6): 6383. https://doi.org/10.1021/acsnano.0c03697

Lavrynenko O.M, Pavlenko O.Yu., Zahornyi M.N., Korichev S.F. Morphology, phase and chemical composition of the nanostructures formed in the systems containing lanthanum, cerium, and silver. Him. Fiz. Technol. Poverhni. 2021. 12(4): 382. [in Ukrainian]. https://doi.org/10.15407/hftp12.04.382

Vember V., Lavrynenko O., Zahornyi M., Pavlenko O., Benatov D. Study of biological activity of lanthanum, cerium, and titanium oxide's nanoparticles and their composites modified by silver. Bulletin of National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Series "Chemical Engineering, Ecology and Resource Saving". 2022. 21(2): 79. [in Ukrainian]. https://doi.org/10.20535/2617-9741.2.2022.260354

Khan M.M., Ansari S.A., Pradhan D., Han D.H., Lee J., Cho M.H. Defect-induced band gap narrowed CeO2 nanostructures for visible light activities. Ind. Eng. Chem. Res. 2014. 53(23): 15233. https://doi.org/10.1021/ie500986n

Khan M.M., Ansari S.A., Ansari M.O., Min B.K., Han D.H., Lee J., Cho M.H. Biogenic fabrication of Au@CeO2 nanocomposite with enhanced visible light activity. J. Phys. Chem. C. 2014. 118(18): 9477. https://doi.org/10.1021/jp500933t

Mudhafar M., Zainol I., Aiza Jaafar C.N., Alsailawi H.A., Desa Sh. A Review Synthesis Methods of Ag Nanoparticles: Antibacterial and Cytotoxicity. International Journal of Drug Delivery Technology. 2021. 11(2): 635.

Shtepliuk J., Khranovskyy V., Ievtushenko A., Yahimova R. Temperature-dependent photoluminescence of ZnO thin films grown on off-axis SiC substrates by APMOCVD. Materials (MDPI). 2021. 14(4): 1035. https://doi.org/10.3390/ma14041035

Lavrynenko O.M., Pavlenko O.Yu., Shchukin Yu.S., Dudchenko N.O., Brik A.B., Antonenko T.S. Characteristics of Nanocomposites Formed on the Steel Surface Contacting with Precious Metal Solutions. In: Microstructure and Properties of Micro- and Nanoscale Materials, Films, and Coatings. (Springer Proceedings in Physics, Chapter 28, 2020). P. 297. https://doi.org/10.1007/978-981-15-1742-6_28

Nguyen-Tri P., Nguyen V., Nguyen T. Biological Activity and Nanostructuration of Fe3O4-Ag/High Density Polyethylene Nanocomposites. J. Compos. Sci. 2019. 3(2): 34. https://doi.org/10.3390/jcs3020034

Zheng Z., Murakamia N., Liu J., Teng Z., Dr. Zhang Q., Cao Yu, Dr. Cheng H., Dr. Ohno T. Development of Plasmonic Photocatalyst by Site-selective Loading of Bimetallic Nanoparticles of Au and Ag on Titanium(IV) Oxide. Chem. Cat. Chem. 2020. 12(14): 3783. https://doi.org/10.1002/cctc.202000366

Khalyavka T., Bondarenko M., Shcherban N., Petrik I., Melnyk A. Effect of the C and S additives on structural, optical, and photocatalytic properties of TiO2. Appl. Nanosci. 2018. 9: 695. https://doi.org/10.1007/s13204-018-0838-1

Moradi H., Eshaghi A., Hosseini S.R., Ghani K. Fabrication of Fe-doped TiO2 nanoparticles and investigation of photocatalytic decolorization of reactive red 198 under visible light irradiation. Ultrason. Sonochem. 2016. 32: 314. https://doi.org/10.1016/j.ultsonch.2016.03.025

Xiong Z., Ma J., Ng W.J., Waite T.D., Zhao X.S. Silver-modified mesoporous TiO2 photocatalyst for water purification. Water Res. 2011. 45(5): 2095. https://doi.org/10.1016/j.watres.2010.12.019

Ma J., Xiong Z., David Waite T., Ng W.J., Zhao X.S. Enhanced inactivation of bacteria with silver-modified mesoporous TiO2under weak ultraviolet irradiation. Microporous Mesoporous Mater. 2011. 144(1-3): 97. https://doi.org/10.1016/j.micromeso.2011.03.040

Karimipour Z., Yengejeh R.J., Haghighatzadeh A., Mohammadi M.K., Rouzbahani M.M. UV-Induced Photodegradation of 2,4,6-Trichlorophenol Using Ag-Fe2O3-CeO2 Photocatalysts. J. Inorg. Organomet. Polym. Mater. 2021. 9(3): 191. https://doi.org/10.1007/s10904-020-01859-1

Zahornyi M.M., Tyschenko N.I., Lobunets T.F., Kolomys O.F., Strelchuk V.V., Naumenko K.S., Biliavska L.O., Zahorodnia S.D., Lavrynenko O.M., Ievtushenko A.I. The Ag Influence on the Surface States of TiO2, Optical Activity and Its Cytotoxicity. Journal of Nano-And Electronic Physics. 2021. 13(6): 06009. [in Ukrainian]. https://doi.org/10.21272/jnep.13(6).06009

Filho S.A, dos Santos O.A.L, dos Santos M.S., Backx B.P. Exploiting Nanotechnology to Target Viruses. J. Nanotechnol. Nanomaterials. 2020. 1(1): 11.

Tang Z., Zhang Y., Xu Y. A facile and high yield approach to synthesize one-dimensional CeO2 nanotubes with well shaped hollow interior as a photocatalyst for degradation of toxic pollutants. RSC Adv. 2011. 1(9): 1772. https://doi.org/10.1039/c1ra00518a

Zholobak N.M., Mironenko A.P., Shecherbakov A.B., Shydlovska O.A., Spivak M.Ya., Radchenko L.V., Marinin A.I., Ivanova O.S., Baranchikov A.E., Ivanov V.K. Cerium dioxide nanoparticles increase immunogenicity of the influenza vaccine. Antiviral Res. 2016. 127: 1. https://doi.org/10.1016/j.antiviral.2015.12.013

Ismail R.A., Abid S.A., Taba A.A. Preparation and characterization of CeO2@Ag core/shell nanoparticles by pulsed laser ablation in water. Lasers Manuf. Mater. Process. 2019. 6: 126. https://doi.org/10.1007/s40516-019-00086-y

Li H., Xia P., Pan S., Qi Z., Fu C., Yu Z., Kong W., Chang Y., Wang K., Wu D., Yang X. The Advances of Ceria Nanoparticles for Biomedical Applications in Orthopaedics. Int. J. Nanomed. 2020. 2020: 7199. https://doi.org/10.2147/IJN.S270229

Khan S., Ansari A.A., Rolfo C., Coelho A., Abdulla M., Al-Khayal K., Ahmad R. Evaluation of in vitro cytotoxicity, biocompatibility, and changes in the expression of apoptosis regulatory proteins induced by cerium oxide nanocrystals. Sci. Technol. Adv. Mater. 2017. 18(1): 364. https://doi.org/10.1080/14686996.2017.1319731

Gaiser B.K., Fernandes T.F., Jepson M.A., Lead J.R., Tyler C.R., Baalousha M., Biswas A., Britton G.J., Cole P.A., Johnston B.D., Ju-Nam Y., Rosenkranz P., Scown T.M., Ston V. Interspecies comparison on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environ. Toxicol. Chem. 2012. 31(1): 144. https://doi.org/10.1002/etc.703

Lavrynenko O.M., Zahornyi M.M., Vember V.V., Pavlenko O.Yu., Lobunets T.F., Kolomys O.F., Povnitsa O.Yu., Artiukh L.O., Naumenko K.S., Zahorodnia S.D., Garmasheva I.L. Nanocomposites based on cerium, lanthanum, and titanium oxides doped with silver for biomedical application. Condens. Matter. 2022. 7(3): 45. https://doi.org/10.3390/condmat7030045

European Collection of Animal Cell Cultures Catalog. Porton Down: Salisbury. (UK, PHLS Centre of Applied Microbiology and Research, 1990).

Hu R.L., Li S.R., Kong F.J., Hou R.J., Guan X.L, Guo F. Inhibition effect of silver nanoparticles on herpes simplex virus 2. Genetics and Molecular Research. 2014. 13(3): 7022. https://doi.org/10.4238/2014.March.19.2

Kusmierek E. A CeO2 Semiconductor as a Photocatalytic and Photoelectrocatalytic Material for the Remediation of Pollutants in Industrial Wastewater: A Review. Catalysts. 2020. 10(12): 1435. https://doi.org/10.3390/catal10121435

Xue Z., Shen Y., Li. P., Pan Y., Li J., Feng Z., Zhang Y., Zeng Y., Liu Y., Zhu S. Promoting effects of lanthanum oxide on the NiO/CeO2 catalyst for hydrogen production by auto thermal reforming of ethanol. Catal. Commun. 2018. 108: 12. https://doi.org/10.1016/j.catcom.2018.01.024

Heming J.D., Conway J.F., Homa F.L. Herpes virus capsid assembly and DNA packaging. Adv. Anat. Embryol. Cell. Biol. 2017. 223: 119. https://doi.org/10.1007/978-3-319-53168-7_6

Rivas H., Schmaling S., Gaglia M. Shutoff of Host Gene Expression in Influenza A Virus and Herpesviruses: Similar Mechanisms and Common Themes. Viruses. 2016. 8(4): 102. https://doi.org/10.3390/v8040102

Gallardo J., Pérez-Illana M., Martín-González N., San Martín C. Adenovirus Structure: What Is New? Int. J. Mol. Sci. 2021. 22(10): 5240. https://doi.org/10.3390/ijms22105240




DOI: https://doi.org/10.15407/hftp14.02.262

Copyright (©) 2023 M. M. Zahornyi, O. M. Lavrynenko, O. Yu Pavlenko, O. Yu Povnitsa, L. O. Artiukh, K. S. Naumenko, S. D. Zahorodnia, A. I. Ievtushenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.