Colligative properties of various liquid blends vs. Temperature under confined space effects in pores of different adsorbents
DOI: https://doi.org/10.15407/hftp15.01.003
Abstract
The temperature and interfacial behaviors of individual and mixed liquids are of importance from a practical point of view because changes in the phase state of compounds with decreasing temperature could lead to negative effects (e.g., frost damage of porous materials). However, the use of certain mixtures may prevent these negative effects due to the colligative properties of the solutions (cryscopic effects, CE) that lead to several effects including relative lowering of vapor pressure, boiling point elevation, and freezing point depression (FPD). Confined space effects (CSE) also leading to the freezing point depression can affect the colligative properties of liquid mixtures with respect to FPD. One could assume that for some systems with certain FPD due to CE for bulk solutions, there is no additivity (synergetic effect) of CSE and CE, but for others, the opposite results could be. To elucidate these interfacial phenomena, a set of liquid mixtures bound to different adsorbents could be studied using low-temperature NMR spectroscopy. The solutions included acids, bases, and salts as solutes, some liquids (e.g., dimethylsulfoxide, acetonitrile, n-decane) as co-sorbates and others (e.g., CDCl3, CCl4) as dispersion media. The adsorbents included various porous and highly disperse silicas, fumed alumina, carbons (activated carbons, graphene oxides), and porous polymers. So wide ranges of the systems studied could allow one a deeper insight into competitive or additive CSE and CE influencing the interfacial and temperature behaviors of bound liquids. The results of this analysis are of interest from both practical and theoretical points of view.
Keywords
References
1. Franks F. Biophysics and Biochemistry at Low Temperatures. (Cambridge: Cambridge University Press. 1985).
2. Konsta-Gdoutos M.S. (editor). Measuring, Monitoring and Modeling Concrete Properties. (Dordrecht: Springer, 2006). https://doi.org/10.1007/978-1-4020-5104-3
3. Grout B.W.W., Morris G.J. (editors). The Effects of Low Temperatures on Biological Systems. (London: Edward and Arnold Publishers. 1987).
4. Kamide K. Colligative properties. Comprehensive Polymer Science and Supplements. 1989. 4: 75. https://doi.org/10.1016/B978-0-08-096701-1.00004-5
5. Kamide K., Dobashi T. Physical Chemistry of Polymer Solutions. Theoretical Background. (Elsevier, 2000).
6. Reuter J.H., Perdue E.M. Calculation of molecular weights of humic substances from colligative data: Application to aquatic humus and its molecular fractions. Geochim. Cosmochim. Acta. 1981. 45(11): 2017. https://doi.org/10.1016/0016-7037(81)90056-9
7. Stepanos J.J., Addison A.W. Chemical Thermodynamics and Statistical Aspects: Questions to Ask in Fundamentals and Principle. (Elsevier, 2023).
8. Mazza D., Canuto E. Fundamental Chemistry with Matlab. (Elsevier, 2022).
9. Gaffney J.S., Marley N.A. General Chemistry for Engineers. (Elsevier, 2018).
10. DeVoe H. Thermodynamics and Chemistry, LibreTexts, Chemistry. (California State University, 2022).
11. Pancerz M., Ptaszek A., Sofińska K., Barbasz J., Szlachcic P., Kucharek M., Łukasiewicz M. Colligative and hydrodynamic properties of aqueous solutions of pectin from cornelian cherry and commercial apple pectin. Food Hydrocolloids. 2019. 89: 406. https://doi.org/10.1016/j.foodhyd.2018.10.060
12. Gonda I., Groom C.V. Colligative properties of disodium cromoglycate aqueous solutions in relation to their phase diagram. J. Colloid Interface Sci. 1983. 92: 289. https://doi.org/10.1016/0021-9797(83)90146-7
13. Nagvekar M., Tihminlioglu F., Danner R.P. Colligative properties of polyelectrolyte solutions. Fluid Phase Equilibria. 1998. 145(1): 15. https://doi.org/10.1016/S0378-3812(97)00304-X
14. Mjallal I., Feghali E., Hammoud M., Habchi C., Lemenand T. Exploring the colligative properties of Arachidic acid for potential use as PCM. Solar Energy. 2021. 214: 19. https://doi.org/10.1016/j.solener.2020.11.020
15. Kimmich R. NMR Tomography, Diffusometry, Relaxometry. (Heidelberg: Springer, 1997).
16. Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013). https://doi.org/10.1201/b14202
17. Petrov O.V., Furó I. NMR cryoporometry: Principles, applications and potential. Prog. Nuclear Magn. Reson. Spectr. 2009. 54(2): 97. https://doi.org/10.1016/j.pnmrs.2008.06.001
18. Mitchell J., Webber J.B.W., Strange J.H. Nuclear magnetic resonance cryoporometry. Phys. Rep. 2008. 461(1): 1. https://doi.org/10.1016/j.physrep.2008.02.001
19. Chaplin M. Water structure and science. http://www1.lsbu.ac.uk/water/, accessed on 2 October, 2023.
20. Rasmussen D.H., MacKenzie A.P. Phase diagram for the system water-dimethylsulphoxide. Nature. 1968. 220: 1315. https://doi.org/10.1038/2201315a0
21. Technical Bulletin Reaction Solvent Dimethyl Sulfoxide (105B DMSO). Gaylord Chemical. 2011. 105FINALnoframe2.doc (chemistry-chemists.com).
22. Lam S.Y., Benoit R.L. Some thermodynamic properties of the dimethylsulfoxide-water and propylene carbonate-water systems at 25 °C. Can. J. Chem. 1974. 52(5): 718. https://doi.org/10.1139/v74-113
23. Lü P., Zhao G., Zhang X., Yin J., Bao J. Measurement and prediction on the surface properties of dimethyl sulfoxide/water mixtures. Chem. Res. Chin. Univ. 2016. 32: 100. https://doi.org/10.1007/s40242-016-5297-1
24. Mohan G., Venkataraman M., Gomez-Vidal J., Coventry J. Assessment of a novel ternary eutectic chloride salt for next generation high-temperature sensible heat storage. Energy Conversion and Management. 2018. 167: 156. https://doi.org/10.1016/j.enconman.2018.04.100
25. Viola W., Andrew T.L. An aqueous eutectic electrolyte for low-cost, safe energy storage with an operational temperature range of 150 °C, from -70 to 80 °C. J. Phys. Chem. C. 2021. 125(1): 246. https://doi.org/10.1021/acs.jpcc.0c09676
26. Barnes W.H., Maass O. Freezing points and heat capacities of aqueous solutions of potassium chloride. Can. J. Res. 1930. 2(3): 218. https://doi.org/10.1139/cjr30-017
27. Harriss M.G., Milne J.B. The trifluoroacetic acid solvent system. Part V. Cryoscopic measurements. Can. J. Chem. 1976. 54(19): 3031. https://doi.org/10.1139/v76-429
28. Haghighi H., Chapoy A., Tohidi B. Freezing point depression of electrolyte solutions: experimental measurements and modeling using the cubic-plus-association equation of state. Ind. Eng. Chem. Res. 2008. 47(11): 3983. https://doi.org/10.1021/ie800017e
29. Cady H.H., Cady G.H. Freezing points of the system water-trifluoroacetic acid. J. Am. Chem. Soc. 1954. 76(3): 915. https://doi.org/10.1021/ja01632a087
30. Zavitsas A.A. Some opinions of an innocent bystander regarding the Hofmeister series. Current Opinion Colloid Interface Sci. 2016. 23: 72. https://doi.org/10.1016/j.cocis.2016.06.012
31. Wang G., Zhou Y., Jing Z., Wang Y., Chai K., Liu H., Zhu F., Wu Z. Anomalous ion hydration and association in confined aqueous CaCl2 solution. J. Mol. Liquid. 2022. 360: 119409. https://doi.org/10.1016/j.molliq.2022.119409
32. Petroselli M., Chen Y.-Q., Zhao M.-K., Rebek J. Jr., Yu Y. C-H...X-C bonds in alkyl halides drive reverse selectivities in confined spaces. Chinese Chemical Letters. 2023. 34(5): 107834. https://doi.org/10.1016/j.cclet.2022.107834
33. Malfait B., Jani A., Morineau D. Confining deep eutectic solvents in nanopores: Insight into thermodynamics and chemical activity. J. Mol. Liquid. 2022. 349: 118488. https://doi.org/10.1016/j.molliq.2022.118488
34. Gun'ko V.M., Turov V.V., Krupska T.V., Borysenko M.V. Surroundings effects on the interfacial and temperature behaviors of NaOH/water bound to hydrophilic and hydrophobic nanosilicas. J. Colloid Interface Sci. 2023. 634: 93. https://doi.org/10.1016/j.jcis.2022.12.027
35. Gun'ko V.M., Turov V.V., Pakhlov E.M., Krupska T.V., Charmas B. Effect of water content on the characteristics of hydro-compacted nanosilica. Appl. Surf. Sci. 2018. 459: 171. https://doi.org/10.1016/j.apsusc.2018.07.213
36. Gun'ko V.M., Turov V.V., Goncharuk O.V., Pakhlov E.M., Matkovsky O.K. Interfacial phenomena at a surface of individual and complex fumed nanooxides. Surface. 2019. 11(26): 3. https://doi.org/10.15407/Surface.2019.11.003
37. Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk E.V., Gerashchenko I.I., Turova A.A., Mironyuk I.F., Leboda R., Skubiszewska-Zięba J., Janusz W. Comparative characterization of polymethylsiloxane hydrogel and silylated fumed silica and silica gel. J. Colloid Interface Sci. 2007. 308(1): 142. https://doi.org/10.1016/j.jcis.2006.12.053
38. Gun'ko V.M., Turov V.V., Krupska T.V., Protsak I.S., Borysenko M.V., Pakhlov E.M. Polymethylsiloxane alone and in composition with nanosilica under various conditions. J. Colloid Interface Sci. 2019. 541: 213. https://doi.org/10.1016/j.jcis.2019.01.102
39. Gun'ko V.M., Turov V.V. Nanostructured systems based on polymethylsiloxane and nanosilicas with hydrophobic and hydrophilic functionalities. Colloids Surf. A. 2023. 677: 132448. https://doi.org/10.1016/j.colsurfa.2023.132448
40. Collins K.D. Ions from the Hofmeister series and osmolytes: Effects on proteins in solution and in the crystallization process. Methods. 2004. 34(3): 300. https://doi.org/10.1016/j.ymeth.2004.03.021
41. Robinson J.B. Jr., Strottmann J.M., Stellwagen E. Proc. Natl. Acad. Sci. USA. 1981. 78: 2287. https://doi.org/10.1073/pnas.78.4.2287
42. Gupta S., Pel L., Kopinga K. Crystallization behavior of NaCl droplet during repeated crystallization and dissolution cycles: An NMR study. J. Crystal Growth. 2014. 391: 64. https://doi.org/10.1016/j.jcrysgro.2014.01.016
43. Mallamace F., Corsaro C., Broccio M., Branca C., González-Segredo N., Spooren J., Chen S.-H., Stanley H.E. NMR evidence of a sharp change in a measure of local order in deeply supercooled confined water. Proc. Natl. Acad. Sci. USA. 2008. 105(35): 12725. https://doi.org/10.1073/pnas.0805032105
44. Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. 2nd ed. (London: Academic Press, 1982).
45. Adamson A.W., Gast A.P. Physical Chemistry of Surface. Sixth edn. (New York: Wiley, 1997).
46. Gun'ko V.M. Textural characteristics of composite adsorbents analyzed with density functional theory and self-consistent regularization procedure. Him. Fiz. Tehnol. Poverhni. 2020. 11(2): 163. https://doi.org/10.15407/hftp11.02.163
47. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A. Jr., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. Gaussian 16, Revision C.02, Gaussian, Inc., Wallingford CT, 2019.
48. Barca G.M.J., Bertoni C., Carrington L., Datta D., De Silva N., Deustua J.E., Fedorov D.G., Gour J.R., Gunina A.O., Guidez E., Harville T., Irle S., Ivanic J., Kowalski K., Leang S.S., Li H., Li W., Lutz J.J., Magoulas I., Mato J., Mironov V., Nakata H., Pham B.Q., Piecuch P., Poole D., Pruitt S.R., Rendell A.P., Roskop L.B., Ruedenberg K. Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys. 2020. 152(15): 154102. https://doi.org/10.1063/5.0005188
49. Marenich A.V., Cramer C.J., Truhlar D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009. 113(18): 6378. https://doi.org/10.1021/jp810292n
50. Stewart J.J.P. MOPAC2022. Stewart Computational Chemistry. web: HTTP://OpenMOPAC.net. 2022. (accessed on 06.12.2022).
51. Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., Ferrin T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021. 30(1): 70. https://doi.org/10.1002/pro.3943
52. Avogadro 2. https://two.avogadro.cc/. Ver. 1.97. 2023.
53. Zhurko G.A., Zhurko D.A. Chemcraft (version 1.8, build 640). http://www.chemcraftprog.com.
54. Jmol: an open-source Java viewer for chemical structures in 3D (Ver. 16.1.41). http://www.jmol.org/.
55. Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution. IUPAC Technical Report. Pure Application Chemistry. 2015. 87(9-10): 1051. https://doi.org/10.1515/pac-2014-1117
56. Gregg S.J., Sing K.S.W., Stoeckli H.F. (editors). Characterization of Porous Solids. (London: Soc. Chem. Industry, 1979).
57. Rouquerol J., Baron G.V., Denoyel R., Giesche H., Groen J., Klobes P., Levitz P., Neimark A.V., Rigby S., Skudas R., Sing K., Thommes M., Unger K. The characterization of macroporous solids: An overview of the methodology. Microporous Mesoporous Mater. 2012. 154: 2. https://doi.org/10.1016/j.micromeso.2011.09.031
58. Shegokar R., Souto E.B. (editors), Characterization of Micro and Nanoparticles for Biomedical Applications (Micro and Nano Technologies). (Elsevier, 2024. ISBN: 9780323961387).
59. McEnaney B., Mays T.J., Rodriguez-Reinoso F. (editors). Fundamental Aspects of Active Carbons. Special issue. Carbon 1998. 36(10).
60. Cooney D.O. Activated Charcoal in Medical Applications. (New York: Marcel Dekker, 1995). https://doi.org/10.1201/9780367803964
61. Rodriguez-Reinoso F., McEnaney B., Rouquerol J., Unger K. (editors). Studies in Surface Science and Catalysis. V. 144, Characterisation of Porous Solids VI. (Amsterdam: Elsevier Science, 2002).
62. Biricik H., Sarier N. Comparative study of the characteristics of nano silica-, silica fume- and fly ash - incorporated cement mortars. Materials Research. 2014. 17(3): 570. https://doi.org/10.1590/S1516-14392014005000054
63. Hashim A.A. (editor). Smart Nanoparticles Technology. (Rijeka, Croatia: InTech, 2012). https://doi.org/10.5772/1969
64. Iler R.K. The Chemistry of Silica. Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. (Chichester: Wiley, 1979).
65. Bergna H.E., Roberts W.O. (editors). Colloidal Silica: Fundamentals and Applications. (Boca Raton: CRC Press, 2006). https://doi.org/10.1201/9781420028706
66. Legrand A.P. (editor). The Surface Properties of Silicas. (New York: Wiley, 1998).
67. Basic characteristics of Aerosil fumed silica (4th ed.). Tech. Bull. Fine Particles 11. (Hanau: Evonik Industries, 2014).
68. Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk O.V., Matkovsky A.K., Prykhod'ko G.P., Nychiporuk Yu.M., Pakhlov E.M., Krupska T.V., Balakin D.Yu., Charmas B., Andriyko L.S., Skubiszewska-Zięba J., Marynin A.I., Ukrainets A.I., Kartel M.T. Multi-layer graphene oxide alone and in a composite with nanosilica: preparation and interactions with polar and nonpolar adsorbates. Applied Surface Science. 2016. 387: 736. https://doi.org/10.1016/j.apsusc.2016.06.196
DOI: https://doi.org/10.15407/hftp15.01.003
Copyright (©) 2024
This work is licensed under a Creative Commons Attribution 4.0 International License.