Electrocatalytic reduction of water clusters on binary alloys of molybdenum with iron subgroup metals in an alkaline medium
DOI: https://doi.org/10.15407/hftp15.01.035
Abstract
The total reorganization energy of the system and its components, the solvent reorganization energy and the transformation energy of reactants (water clusters [(H2O)nOH]-), during electrocatalytic hydrogen evolution on binary alloys of molybdenum with iron subgroup metals (Fe, Co, Ni) in an alkaline medium (30 wt. % NaOH solution) have been calculated.
The calculated values of the solvent reorganization energy and the reorganization energy of water clusters are in agreement with the Marcus – Dogonadze – Kuznetsov theory. The dependence of the total reorganization energy of the system, the solvent reorganization energy, and the reorganization energy of discharging species (water clusters) on the electrolyte temperature has been calculated. It was shown that the total reorganization energy of the system and the activation energy of the electron-transfer reaction of electrocatalytic hydrogen evolution (HER) on binary alloys of molybdenum with iron subgroup metals in an alcaline vedium (30 wt. % NaOH solution) decrease linearly with increasing electrolyte temperature in the following order: Fe-54 at. % Mo > Ni-54 at. % Mo > Co-52 at. % Mo.
The temperature dependences of the water cluster discharge reorganization energy and the activation energy on binary molybdenum alloys are linear and intersect in the boiling point region of 30 wt. % NaOH solution 384.7 K. At this temperature, the electrode process is limited by the diffusion of regenerating water clusters to the electrode surface. The calculated diffusion activation energy Ad is 9.9 kJ·mol–1. The value of the system reorganization energy lt is 39.8 kJ·mol–1, which is consistent with the theory of Markus – Dogonadze – Kuznetsov. Electrocatalytic activity of binary alloys of molybdenum with iron subgroup mKeywords
References
1. Halim J., Abdel-Karim R., El-Raghy S., Nabil M., Waheed A. Electrodeposition and characterization of nanocrystalline Ni-Mo catalysts for hydrogen production. J. Nanomater. 2012. 2012: 845673. https://doi.org/10.1155/2012/845673
2. Aaboubi O. Hydrogen evolution activity of Ni-Mo coating electrodeposited under magnetic field control. Int. J. Hydrogen Energy. 2011. 36(8): 4702. https://doi.org/10.1016/j.ijhydene.2011.01.035
3. Raj I.A., Venkatesan V.K. Characterization of nickel-molybdenum and nickel-molybdenum-iron alloy coatings as cathodes for alkaline water electrolysers. Int. J. Hydrogen Energy. 1988. 13(4): 215. https://doi.org/10.1016/0360-3199(88)90088-2
4. Entelis S.G., Tiger R.P. Kinetics of reactions in a liquid phase. (Moscow: Khimiya, 1973). [in Russian].
5. Tsirlina G.A, Petrii O.A., Kharkats Y.I., Kuznetsov A.M. Effect of the electrical double layer on the rate of electrode processes at high overvoltages: Comparing different theoretical approaches. Russ. J. Electrochem. 1999. 35(8): 832.
6. Kublanovsky V.S., Nikitenko V.M., Rudenko K.P. Reorganization energy in the discharge of palladium (II) hydroxyllethyliminodiacetate complexes. Reports of the National Academy of Sciences of Ukraine. 2014. 3: 126. [in Ukrainian]. https://doi.org/10.15407/dopovidi2014.03.126
7. Antropov L.I. Theoretical electrochemistry. (Kyiv: Lybid, 1993). [in Ukrainian].
8. Kublanovsky V.S., Yapontseva Y.S. Electrocatalytic properties of Co-Mo alloys electrodeposited from a citrate-pyrophosphate electrolyte. Electrocatalysis. 2014. 5: 372. https://doi.org/10.1007/s12678-014-0197-y
9. Kublanovskii V., Yapontseva Yu., Bersirova O., Gromova V. Corrosion behavior of Electrodeposited Co-Mo-P Alloys. Physicochemical Mechanics of Materials. 2008. 315.
10. Yapontseva Y.S., Maltseva T.V., Kublanovsky V.S. Corrosion Properties of Electrolytic Coatings Based on CoW, CoRe, and CoWRe Alloys. Mater. Sci. 2021. 56: 649. https://doi.org/10.1007/s11003-021-00477-7
11. Yapontseva Yu.S., Maltseva T.V., Kublanovsky V.S., Vyshnevskyi O.A. Electrodeposition of CoWRe alloys from polyligand citrate-pyrophosphate electrolyte. J. Alloys Compd. 2019. 803: 1. https://doi.org/10.1016/j.jallcom.2019.06.250
12. Ved M.V., Nenastina T.O., Shtefan V.V., Bairachna T.M., Sakhnenko M.D. Corrosion and electrochemical properties of binary cobalt and nickel alloys. Mater. Sci. 2008. 44(6): 840. https://doi.org/10.1007/s11003-009-9141-3
13. Sakhnenko N.D., Ved M.V., Hapon Yu.K., Nenastina T.A. Functional coatings of ternary alloys of cobalt with refractory metals. Russ. J. Appl. Chem. 2015. 88(12): 1941. https://doi.org/10.1134/S1070427215012006X
14. Nenastina T.A., Ved M.V., Sakhnenko N.D., Yermolenko I.Y., Volobuyev M.M., Proskurina V.O. Cobalt based coatings as catalysts for methanol oxidation. Funct. Mater. 2020. 27(1): 107.
15. Nenastina T.A., Ved M.V., Sakhnenko N.D., Proskurina V.O., Fomina L.P. Galvanochemical formation of functional coatings by alloys cobalt-tungsten doped with zirconia. Funct. Mater. 2020. 27(2): 348. https://doi.org/10.15407/fm27.02.348
16. Bersirova O., Kublanovs'kyi V. Nickel-Rhenium Electrolytic Alloys: Synthesis, Structure, and Corrosion Properties. Mater. Sci. 2019. 54(4): 506. https://doi.org/10.1007/s11003-019-00211-4
17. Bersirova O., Bilyk S., Kublanovsky V. Electrochemical synthesis of Fe-W nanostructural electrocatalytic coatings. Mater. Sci. 2018. 53(5): 732. https://doi.org/10.1007/s11003-018-0130-2
18. Vernickaite E., Bersirova O., Cesiulis H., Tsyntsaru N. Design of Highly Active Electrodes for Hydrogen Evolution Reaction Based on Mo-Rich Alloys Electrodeposited from Ammonium Acetate Bath. Coatings. 2019. 9(2): 85. https://doi.org/10.3390/coatings9020085
19. Reference book of chemist. V. 3. (Moscow-Leningrad: Chemistry, 1965). P. 355. [in Russian].
20. Beck M., Nagypal I. Chemistry of complex equilibria. (Budapest: Akademiai Kiado, 1989).
21. Dogonadze R.R., Kuznetsov A.M. Kinetics and catalysis. Kinetics of heterogeneous chemical reactions in solutions. V. 5. (Moscow: VINITI, 1978). [in Russian].
DOI: https://doi.org/10.15407/hftp15.01.035
Copyright (©) 2024
This work is licensed under a Creative Commons Attribution 4.0 International License.