Chemistry, Physics and Technology of Surface, 2024, 15 (1), 57-66.

Physico-chemical characteristics of microcrystalline cellulose from switchgrass (Panicum virgatum L.) obtained in the presence of a solid catalyst



DOI: https://doi.org/10.15407/hftp15.01.057

T. V. Tkachenko, O. O. Haidai, D. S. Kamenskyh, Y. V. Sheludko, O. V. Pavliuk, V. O. Yevdokymenko

Abstract


The main idea of this work is the investigation of structural and morphological characteristics of microcrystalline cellulose with switchgrass (Panicum virgatum L.) by the method of organo-solvent cooking with the addition of various brands of ion-exchange resins instead of sulfuric acid. A sulfonated copolymer of styrene and divinyl benzene with two functional groups per ring - Purolite CT-275 and a sulfonated copolymer based on tetrafluoroethylene - Nafion NR-50 were chosen as initial ion exchange resins. Air-dry switchgrass (Panicum virgatum L.), a technical culture, was used for the research. Microcrystalline cellulose (MCC) was obtained from it by the method of organo-solvent cooking with the addition of a solid catalyst. Using the methods of XRD, FTIR-ATR, AFM, TGA and DSC, the structure and morphology of MCC were studied. It is found that the use of ion-exchange resins in the organo-solvent method of obtaining MCC in a batch reactor requires the use of protective covers for the catalyst to avoid its mechanical damage. It has been found that only sulfonated copolymers based on tetrafluoroethylene are stable in the cooking solution, in contrast to sulfonated copolymers of styrene and divinylbenzene, and allow obtaining MCC from millet with a yield of 53 % versus 40 % for the classical method and a degree of polymerization of 440 versus 578, respectively. Due to the destruction of amorphous binders in the MCC’s from switchgrass (Panicum virgatum L.), regardless of the conditions of its production, we observe further ordering of the structure of the obtained MCC which is expressed in narrower and more intense peaks in the range 2θ = 22–23°. The FTIR-ATR method showed that the obtained MCC has functional groups similar to commercial M-1021. The AFM method showed that MCC has a globular and wavy relief. Surface roughness with globular relief is 12.6 nm.


Keywords


microcrystalline сellulose; switchgrass; ion-exchange resin; relief of the surface; Nafion NR-50

Full Text:

PDF

References


1. Furkan H. Isikgora, C., Becer R. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 2015. 6(25): 4497. https://doi.org/10.1039/C5PY00263J

2. Ioelovich M.J. Microcellulose Vs Nanocellulose - A Review. World Journal of Advanced Engineering Technology and Sciences. 2022. 05(02): 001. https://doi.org/10.30574/wjaets.2022.5.2.0037

3. Ventura-Cruz S., Tecante A. Nanocellulose and microcrystalline cellulose from agricultural waste: Review on isolation and application as reinforcement in polymeric matrices. Food Hydrocolloids. 2021. 118: 106771. https://doi.org/10.1016/j.foodhyd.2021.106771

4. Wang J., Zhang R., Quan C., Shao X. Green preparation of porous corncob microcrystalline cellulose, and its properties and applications. Cellulose. 2022. 29(2): 7125. https://doi.org/10.1007/s10570-022-04724-1

5. Trachea D., Hussinb M.H., Chuinb C.T.H., Sabarc S., Fazitad M.R.N., Taiwod O.F.A., Hassand T.M., Haafiz M.K.M. Microcrystalline cellulose: Isolation, characterization and bio-composites application - A review. Int. J. Biol. Macromol. 2016. 93(Part A): 789. https://doi.org/10.1016/j.ijbiomac.2016.09.056

6. Izzati Zulkifli N., Samat N., Anuar H., Zainuddin N. Mechanical propertiesand failure modes of recycled polypropylene/microcrystalline cellulose composites. Mater. Des. 2015. 69: 114. https://doi.org/10.1016/j.matdes.2014.12.053

7. Yao Y., Chen S., Zhang M. Sustainable Approaches to Selective Conversion of Cellulose Into 5-Hydroxymethylfurfural Promoted by Heterogeneous Acid Catalysts: A Review. Front. Chem. 2022. 10: 1. https://doi.org/10.3389/fchem.2022.880603

8. Zhang W., Shi M., Wang L., Li Y., Wang H., Niu L. New insights into nitrogen removal potential in urban river by revealing the importance of microbial community succession on suspended particulate matter. Environ. Res. 2022. 204: 112371. https://doi.org/10.1016/j.envres.2021.112371

9. Yu C., Wu W., Gao M., Liu Y. Modified Cellulose with BINAP-Supported Rh as an Efficient Heterogeneous Catalyst for Asymmetric Hydrogenation. Catalysts. 2022. 12(1):83. https://doi.org/10.3390/catal12010083

10. Kalia S., Kaith B., Kaur I. Cellulose Fibers: Bio- and Nano-polymerComposites: Green Chemistry and Technology. (Springer Science & BusinessMedia, 2011). https://doi.org/10.1007/978-3-642-17370-7

11. Microcrystalline Cellulose (MCC) Market by Application (Food & Beverage, Pharmaceutical, Cosmetics & Personal Care), Raw Material Source (Wood-based, Non-wood-based), and Region (North America, Europa, APAC, RoW) - Global Forecast to 2024. https://www.marketsandmarkets.com/Market-Reports/microcrystalline-cellulose-market-59144224.html?gclid=CjwKCAjwg-GjBhBnEiwAMUvNWxjjBJK8-0ygb3NPoon_YyooPYCKQe8kdSkE-cv77d6PvvcJQKcp5RoCnJcQAvD_BwE.

12. Battista O.A., Smith P.A. Microcrystalline cellulose. Ind. Eng. Chem. 1962. 54(9): 20. https://doi.org/10.1021/ie50633a003

13. Barbash V., Karakutsa M., Trembus I., Yaschenko O. Development the technology of obtaining microcrystalline cellulose from the hemp fibers. Eastern-European Journal of Enterprise Technologie. 2016. 3(6):51. https://doi.org/10.15587/1729-4061.2016.71275

14. Kuznetsov B.N., Taraban'ko V.E., Kuznetsova S.A. New catalytic methods for obtaining cellulose and other chemical products from vegetable biomass. Kinet. Catal. 2008. 49(4): 517. https://doi.org/10.1134/S0023158408040101

15. Kuznetsov B.N., Kuznetsova S.A., Danilov V.G., Yatsenkova O.V., Petrov A.V. A green one-step process of obtaining microcrystalline cellulose by catalytic oxidation of wood. React. Kinet., Mech. Catal. 2011. 104(2): 337. https://doi.org/10.1007/s11144-011-0354-8

16. Kuznetsov B.N., Sharypov V.I., Grishechko L.I., Celzard A. Integrated catalytic process for obtaining liquid fuels from renewable lignocellulosic biomass. Kinet. Catal. 2013. 54(3): 344. https://doi.org/10.1134/S0023158413030105

17. Abd Hamid B.S., Chowdhury Z.Z., Karim M.Z. Catalytic Extraction of Microcrystalline Cellulose (MCC)from Elaeis guineensis using Central Composite Design(CCD). BioRes. 2014. 9(4): 7403. https://doi.org/10.15376/biores.9.4.7403-7426

18. Tigunova O.O., Kamenskyh D.S., Tkachenko T.V. et al. Biobutanol Production from Plant Biomass. The Open Agriculture Journal. 2020. 14(3): 187. https://doi.org/10.2174/1874331502014010187

19. Tkachenko T.V., Yevdokymenko V.O., Kamenskyh D.S., Filonenko M.M., Vakhrin V.V., Kashkovsky V.I. Processing of vegetable waste of different origin. Science and Innovation. 2018. 14(2): 48. https://doi.org/10.15407/scine14.02.048

20. Tkachenko T.V., Kamenskyh D.S., Sheludko Y.V., Yevdokymenko V.O. Structural and morphological features of microcrystalline cellulose from soybean straw by organosolvent treatment. Him. Fiz. Tehnol. Poverhni. 2022. 13(4): 455. https://doi.org/10.15407/hftp13.04.455

21. Korzh R.V., Bortyshevskii V.A., Tkachenko T.V., Evdokimenko V.A., Boiko V.V. Physicochemical properties of membranes based on MSC-H and purolite CT-275 sulfocation-exchange resins. Russ. J. Appl. Chem. 2007. 80: 1335. https://doi.org/10.1134/S1070427207080149

22. Tigunova O.O., Beiko N.E., Kamenskyh D.S., Tkachenko T.V., Yevdokymenko V.O., Kashkovskiy V.I., Shulga S.M. Lignocellulosic biomass after explosive autohydrolysis as substrate for butanol. Biotechnologia Acta. 2016. 9(4): 28. https://doi.org/10.15407/biotech9.04.028

23. Obolenskaya A.V., Yelnitskaya Z.P., Leonovich A.A. Laboratory work on the chemistry of wood and cellulose. (Moscow: Ecology, 1991). [in Russian].

24. Swantomo D., Giyatmi, Adiguno S.H., Wongsawaeng D. Preparation of microcrystalline cellulose from waste cotton fabrics using gamma irradiation. Eng. J. 2017. 21(2): 173. https://doi.org/10.4186/ej.2017.21.2.173

25. Hu H., Zhang Y., Liu X., Huang Z., Chen Y., Yang M., Qin X., Feng Z. Structural changes and enhanced accessibility of natural cellulose pretreated by mechanical activation. Polym Bull. 2014. 71: 453. https://doi.org/10.1007/s00289-013-1070-5

26. Park S., Baker J.O., Himmel M.E., Parilla P.A., Johnson D.K. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels. 2010. 3(1): 10. https://doi.org/10.1186/1754-6834-3-10

27. Latif M.H.A., Mahmood Y.F. Isolation and characterization of microcrystalline cellulose and preparation of nano-crystalline cellulose from tropical water hyacinth. J. Pure Appl. Sci. 2018. 31(1): 180. https://doi.org/10.30526/31.1.1865

28. Swantomo D., Giyatmi G., Adiguno S.H., Wongsawaeng D. Preparation of microcrystalline cellulose from waste cotton fabrics using gamma irradiation. Engl. J. 2017. 21(2): 173. https://doi.org/10.4186/ej.2017.21.2.173

29. Jia N., Li S.-M., Ma M.-G., Zhu J.-F., Sun R.-C. Synthesis and characterization of cellulose-silica composite fiber in ethanol/water mixed solvents. BioRes. 2011. 6(2): 1186. https://doi.org/10.15376/biores.6.2.1186-1195

30. Hazwan H.M., Husin N.A., Bello I., Othman N., Bakar M.A., Mohamad Haafiz M.K. Isolation of microcrystalline cellulose (MCC) from oil palm frond as potential natural filler for PVALiClO4 polymer electrolyte. Int. J. Electrochem. Sci. 2018. 13(4): 3356. https://doi.org/10.20964/2018.04.06

31. Shen D., Xiao R., Gu S., Zhang H. The Overview of Thermal Decomposition of Cellulose in Lignocellulosic Biomass. In: Cellulose. (UK: IntechOpen Limited, 2013). https://doi.org/10.5772/51883

32. Tkachenko T., Sheludko Y., Yevdokymenko V., Kamenskyh D., Khimach N., Povazhny V., Filonenko M., Aksylenko M., Kashkovsky V. Physico-chemical properties of flax microcrystalline cellulose. Appl. Nanosci. 2022. 12: 1007. https://doi.org/10.1007/s13204-021-01819-2

33. Szczes'niak L., Rachocki A., Tritt-Goc J. Glass transition temperature and thermal decomposition of cellulose powder. Cellulose. 2008. 15(3): 445. https://doi.org/10.1007/s10570-007-9192-2

34. El-Sakhawy M., Hassan M.L. Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydr. Polym. 2007. 67(1): 1. https://doi.org/10.1016/j.carbpol.2006.04.009

35. Trache D., Hazwan Hussin M., Chuin C.T.H., Sabar S., Nurul Fazita M.R., Taiwo Owolabi F.A., Hassan T.M., Mohamad Haafiz M.K. Microcrystalline cellulose: Isolation, characterization and bio-composites application. A review. Int. J. Biol. Macromolecules. 2016. 93: 789. https://doi.org/10.1016/j.ijbiomac.2016.09.056




DOI: https://doi.org/10.15407/hftp15.01.057

Copyright (©) 2024

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.