Chemistry, Physics and Technology of Surface, 2024, 15 (1), 102-109.

Removal of cesium and strontium ions from aqueous solutions using metakaolin based geopolymers



DOI: https://doi.org/10.15407/hftp15.01.102

D. V. Tarnovsky, O. S. Fedoryshyn, O. A. Vyshnevskyi, I. V. Romanova

Abstract


The aim of presented work was to synthesize geopolymers based on the metakaolin and to determine their adsorption capability in the process of cesium and strontium ions removal from the aqueous solutions. New approaches were proposed for obtaining the two samples of geopolymers in techologically suitable forms. Morphology of materials  was investigated by means of X-ray fluorescence analysis (XRF), low-temperature nitrogen adsorption/desorption and scanning electron microscopic studies (SEM). As it follow from the data of XRF analysis, SiO2 and Al2O3 oxides found to be the major components in all samples investigated (~ 54–84 wt. %). As was determined by SEM studies, geopolymers consisted from nanosized particles, amorphous geopolymers binder and unreacted kaolin. It has been found that all samples involve the mesopores with approx. 1–40 nm radii. The greatest specific surface area calculated by the Brunauer-Emmet-Teller (BET) method had the sample obtained in the forms of spherical rods (SBET = 88 m2/g) that about 10 times greater than for initial kaolin taken for synthesis. The ion exchange capacities of materials in the process of Cu2+, Cs+  and Sr2+ removal from water solution were determined and it was found that these properties depends on the method of materials obtaining. Data showed that the geopolymers were more effective for removal the desired ions than initial kaolin. The greatest adsorption capacity towards cesium ions was received on the samples obtained in forms of pyramids and was reached 1.75 mmol/g. Experimental data were fitted into the Langmuir models and the main Langmuir constants were calculated. When analysing the data of investigation with comparing the literature data it was noted that geopolymers obtained can be used in adsorption technology for purification of water from radionuclides as technologically suitable sorbents.


Keywords


cesium and strontium ions removal; metakaolin based geopolymers; impact of synthetic route; morphology

Full Text:

PDF

References


1. Alby D., Charnay C., Heran M., Prelot B., Zajac J. Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: synthesis and shaping, sorption capacity, mechanisms, and selectivity - A review. J. Hazard. Mater. 2018. 344: 511. https://doi.org/10.1016/j.jhazmat.2017.10.047

2. Chen Sh., Jiayin Hu J., Han S., Guo Y., Belzile N., Deng T. A review on emerging composite materials for cesium adsorption and environmental remediation on the latest decade. Sep. Purif. Technol. 2020. 251: 117340. https://doi.org/10.1016/j.seppur.2020.117340

3. Abdollahi T., Towfighi J., Rezaei-Vahidian H. Sorption of cesium and strontium ions by natural zeolite and management of produced secondary waste. Environ. Technol. Innovation. 2020. 17: 100592. https://doi.org/10.1016/j.eti.2019.100592

4. Zabulonov Y., Kadoshnikov V., Zadvernyuk H., Melnychenko T., Molochko V. Effect of the surface hydration of clay minerals on the adsorption of cesium and strontium from dilute solutions. Adsorption. 2021. 27: 41. https://doi.org/10.1007/s10450-020-00263-y

5. Galambos M., Kufcakova J., Rosskopfova O., Rajec P. Adsorption of cesium and strontium on natrified bentonites. J. Radioanal. Nucl. Chem. 2010. 283: 803. https://doi.org/10.1007/s10967-009-0424-9

6. Prajitno M.Y., Harbottle D., Hondow N., Zhang H., Hunter T.N. The effect of pre-activation and milling on improving natural clinoptilolite for ion exchange of cesium and strontium. J. Environ. Chem. Eng. 2020. 8(1): 10299. https://doi.org/10.1016/j.jece.2019.102991

7. Parka S.M., Alessi D.S., Baek K. Selective adsorption and irreversible fixation behavior of cesium onto 2:1 layered clay mineral: a mini review. J. Hazard. Mater. 2019. 369: 569. https://doi.org/10.1016/j.jhazmat.2019.02.061

8. Abdollahi T., Towfighi J., Rezaei-Vahidian H. Sorption of cesium and strontium ions by natural zeolite and management of produced secondary waste. Environ. Technol. Innovation. 2020. 17: 100592. https://doi.org/10.1016/j.eti.2019.100592

9. Ge Y., Yuan Y., Wang K., He Y., Cui X. Preparation of geopolymer-based inorganic membrane for removing Ni2+ from wastewater. J. Hazard. Mater. 2015. 299: 711. https://doi.org/10.1016/j.jhazmat.2015.08.006

10. Rozek P., Krol M., Mozgawa W. Geopolymer-zeolite composites: A review. J. Cleaner. Prod. 2019. 230: 557. https://doi.org/10.1016/j.jclepro.2019.05.152

11. Abbas R., Khereby M.A., Ghorab H.Y., Elkhoshkhany N. Preparation of geopolymer concrete using Egyptian kaolin clay and the study of its environmental effects and economic cost. Clean Technol. Environ. Policy. 2020. 22: 669. https://doi.org/10.1007/s10098-020-01811-4

12. Novais R.M., Pullar R.C., Labrincha J.A. Geopolymer foams: An overview of recent advancements. Prog. Mater. Sci. 109: 100621. https://doi.org/10.1016/j.pmatsci.2019.100621

13. Zhang X., Bai Ch., Qiao Y., Wang X., Jia D., Li H., Colombo P. Porous geopolymer composites: A review. Composites, Part A. 2021. 150: 106629. https://doi.org/10.1016/j.compositesa.2021.106629

14. Foo K.Y., Hameed B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010. 156(1): 2. https://doi.org/10.1016/j.cej.2009.09.013

15. Cheng T.W., Lee M.L., Ko M.S., Ueng T.H., Yang S.F. The heavy metal adsorption characteristics on metakaolin-based geopolymer. Appl. Clay Sci. 2012. 56: 90. https://doi.org/10.1016/j.clay.2011.11.027

16. El-Eswed B.I., Yousef R.I., Alshaaer M., Hamadneh I., Al-Gharabli S.I., Khalili F. Stabilization/solidification of heavy metals in kaolin/zeolite based geopolymers. Int. J. Miner. Process. 2015. 137: 34. https://doi.org/10.1016/j.minpro.2015.03.002

17. Panda L., Lena S.K., Rath S.S., Misra P.K. Heavy metal removal from water by adsorption using a low-cost geopolymer. Environ. Sci. Pollut. Res. 2020. 27(9): 24284. https://doi.org/10.1007/s11356-020-08482-0

18. Romanova I.V., Kirillov S.A. Preparation of Cu, Ni and Co oxides by a citric acid-aided route. J. Therm. Anal. Calorim. 2018. 132(3): 503. https://doi.org/10.1007/s10973-017-6880-5

19. Tarnovsky D.V., Tsyba M.M., Kuznetsova L.S., Khodakovska T.A., Romanova I.V. Physico-chemical properties of cerium and ferric doped titanium hydroxides synthesized by two methods. J. Chem. Technol. 2021. 29: 192.

20. Kravchenko M.V., Khodakovska T.A., Kovtun M.F., Romanova I.V. Inorganic sorbents based on magnesium silicates obtained by two synthetic routes. Environ. Earth. Sci. 2022. 81(24): 549. https://doi.org/10.1007/s12665-022-10664-7

21. Rasaki S.A., Bingxue Zh., Guarecuco R., Thomas T., Minghui Y. Geopolymer for use in heavy metals adsorption, and advanced oxidative processes: a critical review. J. Cleaner. Prod. 2018. 12: 145. https://doi.org/10.1016/j.jclepro.2018.12.145

22. Awwad A.M., Amer M.W., Al-aqarbeh M.M. TiO2-kaolinite nanocomposite prepared from the Jordanian Kaolin clay: Adsorption and thermodynamics of Pb(II) and Cd(II) ions in aqueous solution. Chem. Int. 2020. 4(4): 168.

23. Jang J.G., Park S.M., Lee H.K. Cesium and strontium retentions governed by aluminosilicate gel in alkali-activated cements. Materials. 2017. 10(4): 447. https://doi.org/10.3390/ma10040447

24. Vandevenne N., Iacobescu R.I., Carleer R., Samyn P., D'Haen J., Pontikes Y., Schreurs S., Schroeyers W. Alkali-activated materials for radionuclide immobilisation and the effect of precursor composition on Cs/Sr retention. J. Nucl. Mater. 2018. 510: 525. https://doi.org/10.1016/j.jnucmat.2018.08.045

25. Tian Q., Sasaki K. Application of fly ash-based materials for stabilization/solidification of cesium and strontium. Environ. Sci. Pollut. Res. 2019. 26(23): 23542. https://doi.org/10.1007/s11356-019-05612-1




DOI: https://doi.org/10.15407/hftp15.01.102

Copyright (©) 2024

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.