Synthesis and study on antimicrobial properties of hydrogel materials for maxillo-facial surgery
DOI: https://doi.org/10.15407/hftp15.01.110
Abstract
Artificial implants are a favorable environment for bacterial adhesion and subsequent biofilm formation, thereby accelerating the development of infection in the area of implant incorporation. Despite significant progress in the development of various endoprostheses over the past decades, bacterial periprosthetic infection is one of the main factors leading to complications in their use, prolongation of rehabilitation, and significant economic losses. The present work is devoted to the creation of hybrid hydrogel nanocomposites with complex antimicrobial action for endoprosthetics in the maxillofacial region and for filling postoperative cavities (primarily after tumor removal). These nanocomposites were created on the basis of pre-synthesized spongy polyvinylformal with encapsulated gold nanoparticles, the pore space of which was partially filled with pH-sensitive hydrogels based on acrylic acid (or copolymers based on acrylamide and acrylic acid) with sorbed Albucid. The structure of the synthesized hybrid hydrogel materials was confirmed by IR spectroscopy. Studies of the kinetics of hydrogel swelling in buffer solutions with different pH values have shown that the sample filled with a copolymer of acrylamide and acrylic acid with their ratio 95:5 has the optimal properties for preserving the geometric dimensions of the material for endoprosthetics, while in the case of incorporation of 100 % acrylic acid, the degree of swelling of the material (and, respectively, its dimensions) can vary significantly with a change of рН. Antimicrobial effect of the developed hybrid hydrogel materials was investigated using the following bacterial cultures: Escherichia coli ATCC 25922, Enterococcus faecalis ATCC 29213, Staphylococcus aureus ATCC 25923, and Pseudomonas aeruginosa ATCC 27853. The antibacterial effect of polyvinylformal-based composites with incorporated gold nanoparticles that were saturated with Albucid on all test microorganisms was demonstrated (growth inhibition zones ranged from 15 to 35 mm), which will prevent microbial contamination of the developed hybrid hydrogel material when it is used in endoprosthesis.
Keywords
References
1. Pu Y., Lin X., Zhi Q., Qiao S., Yu C. Microporous Implants Modified by Bifunctional Hydrogel with Antibacterial and Osteogenic Properties Promote Bone Integration in Infected Bone Defects. J. Funct. Biomater. 2023. 14(4): 226. https://doi.org/10.3390/jfb14040226
2. Inzana J., Schwarz E., Kates S., Awad H. Biomaterials approaches to treating implant-associated osteomyelitis. Biomaterials. 2016. 81: 58. https://doi.org/10.1016/j.biomaterials.2015.12.012
3. Antoci V., Chen A., Parvizi J. Orthopedic implant use and infection. Comprehensive Biomaterials. 2017. 7(9): 133. https://doi.org/10.1016/B978-0-12-803581-8.10184-5
4. Flemming H., Wingender J. The biofilm matrix. Nat. Rev. Microbiol. 2010. 8(9): 623. https://doi.org/10.1038/nrmicro2415
5. Drago L., Boot W., Dimas K., Malizos K., Hänsch G.M., Stuyck J., Gawlitta D., Romanò C.L.Does implant coating with antibacterial-loaded hydrogel reduce bacterial colonization and biofilm formation in vitro. Clinical Orthopaedics and Related Research. 2014. 472(11): 3311. https://doi.org/10.1007/s11999-014-3558-1
6. Fu M., Liang Y., Lv X., Li Ch., Yan Y., Yuan P., Ding X. Recent advances in hydrogel-based anti-infective coatings. J. Mater. Sci. Technol. 2021. 85: 169. https://doi.org/10.1016/j.jmst.2020.12.070
7. Liu Y., Dong T., Chen Y., Sun N., Liu Q., Huang Zh., Yang Y., Cheng H. Biodegradable and Cytocompatible Hydrogel Coating with Antibacterial Activity for the Prevention of Implant-Associated Infection. ACS Appl. Mater. Interfaces. 2023. 15(9): 11507. https://doi.org/10.1021/acsami.2c20401
8. Zhang C., Parada G., Zhao X., Chen Z. Probing surface hydration and molecular structure of zwitterionic and polyacrylamide hydrogels. Langmuir. 2019. 35(41): 13292. https://doi.org/10.1021/acs.langmuir.9b02544
9. Wei T., Yu Q., Chen H. Responsive and Synergistic Antibacterial Coatings: Fighting against Bacteria in a Smart and Effective Way. Adv. Healthcare Mater. 2019. 8(3): 24. https://doi.org/10.1002/adhm.201801381
10. Antibiotic. https://en.wikipedia.org/wiki/Antibiotic. [electronic resource].
11. Sulfonamide (medicine). https://en.wikipedia.org/wiki/Sulfonamide_(medicine). [electronic resource].
12. Goncharuk O., Samchenko Yu., Sternik D., Kernosenko L., Poltoratska T., Pasmurtseva N., Abramov M., Pakhlov E., Derylo-Marczewska A. Thermosensitive hydrogel nanocomposites with magnetic laponite. Appl. Nanosci. 2020. 10(12): 4559. https://doi.org/10.1007/s13204-020-01388-w
13. Kosenko O., Lukash L., Samchenko Yu., Ruban T., Ulberg Z., Lukash S. Copolymeric Hydrogel Membranes For Immobilization And Cultivation Of Human Stem Cells. Biopolymers and Cell. 2006. 22(2): 143. https://doi.org/10.7124/bc.000729
14. Kernosenko L., Samchenko K., Goncharuk O., Pasmurtseva N., Poltoratska T., Siryk O., Dziuba O., Mironov O., Szewczuk-Karpisz K. Polyacrylamide Hydrogel Enriched with Amber for in vitro Plant Rooting. Plants. 2023. 12(5): 1196. https://doi.org/10.3390/plants12051196
15. Yang K., Han Q., Chen B., Zheng Y., Zhang K., Li Q., Wang J. Antimicrobial hydrogels: promising materials for medical application. Int. J. Nanomedicine. 2018. 13: 2217. https://doi.org/10.2147/IJN.S154748
16. Zhao Y., Jiang X. Multiple strategies to activate gold nanoparticles as antibiotics. Nanoscale. 2013. 5(18): 8340. https://doi.org/10.1039/c3nr01990j
17. Brown A., Smith K., Samuels T., Lu J., Obare S., Scott M. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl. Environ Microbiol. 2012. 78(8): 2768. https://doi.org/10.1128/AEM.06513-11
18. Zeyang P., Li Q., Yuexiao J., Yan W., Qi J., Guo Yu., Hu F., Zhou D., Jiang X. Controlling the pyridinium-zwitterionic ligand ratio on atomically precise gold nanoclusters allowing for eradicating Gram-positive drug-resistant bacteria and retaining biocompatibility. Chem. Sci. 2021. 12(44): 14871. https://doi.org/10.1039/D1SC03056F
19. Samchenko Yu., Dybkova S., Maletsky A., Kernosenko L., Gruzina T.G., Pasmurtseva N.O., Reznichenko L.S., Lyutko O.B., Vitrak K.V., Bigun N.M., Vorotytskyi P.V., Mamyshev I.E. Antimicrobial effect of hybrid hydrogel orbital implants with gold nanoparticles and albucid intended for reconstructive operations in the orbit and oculo-orbital area. Ophthalmological Journal. 2023. 5(514): 27. [in Ukrainian]. https://doi.org/10.31288/oftalmolzh202352733
20. Goncharuk O., Korotych O., Samchenko Yu., Kernosenko L., Kravchenko A., Shtanova L., Tsymbalyuk O., Poltoratska T., Pasmurtseva N., Mamyshev I., Pakhlov E., Siryk O. Hemostatic dressings based on poly(vinyl formal) sponges. Mater. Sci. Eng. C. 2021. 129: 112363. https://doi.org/10.1016/j.msec.2021.112363
21. Han D., Guo Zh., Chen Sh., Xiao M., Peng X., Wang Sh., Meng Y. Enhanced Properties of Biodegradable Poly(Propylene Carbonate)/Polyvinyl Formal Blends by Melting Compounding. Polymers. 2018. 10(7): 771. https://doi.org/10.3390/polym10070771
22. Paril A., Alb A., Giz A., Zatalgil-Giz H. Effect of medium pH on the reactivity ratios in acrylamide acrylic acid copolymerization. J. Appl. Polym. Sci. 2006. 103(2): 968. https://doi.org/10.1002/app.25271
23. [Cabinet of Ministers Decision No.755 of 2 October 2013 On Approval of the Technical Regulation on Implantable Active Medical Devices, as approved on 30 November, 2022. Paragraph 5]. [in Ukrainian].
DOI: https://doi.org/10.15407/hftp15.01.110
Copyright (©) 2024
This work is licensed under a Creative Commons Attribution 4.0 International License.