Chemistry, Physics and Technology of Surface, 2024, 15 (2), 159-170.

Pulsating brownian motor with smooth modeling potentials in the framework of small fluctuation approximation



DOI: https://doi.org/10.15407/hftp15.02.159

T. Ye. Korochkova

Abstract


Brownian motors belong to the class of nanoscale devices that use the thermal noise of the environment as one of the necessary components in the mechanism of their operation. Today, there are a lot of practical implementations of such nanomachines, both inorganic, fairly simple mechanisms produced artificially, and more complex ones created from separate biological components available at the cellular level. One of the options for implementing the mechanism of straightening the chaotic thermal noise of the environment into unidirectional motion is the presence of a motor particle in the field of action of an asymmetric periodic stationary potential, which undergoes certain small disturbances (fluctuations) periodically over time. To describe such asymmetric one-dimensional structures (for example, dipole chains or fibers of the cytoskeleton) in the theory of Brownian motors, two model potentials are most often used: piecewise linear sawtooth and double sinusoidal. In this work, within the framework of the approximation of small fluctuations, a model of a pulsating Brownian motor with a stationary double sinusoidal potential and a disturbing small harmonic signal is considered. A new method of parametrization of such a problem is proposed, which allows to separate the contributions from various factors affecting the operation of the ratchet, and the numerical procedure for calculating the average speed of the directional movement of nanoparticles for the selected type of model potentials is specified. A number of numerical dependences of the average speed on the main parameters of the system were obtained. Peculiarities of the behavior of the motor as dependent on the parameter responsible for asymmetry and the number of potential wells on the spatial period of the stationary potential have been investigated. It is shown that the direction of the generated flux of nanoparticles depends not only on the phase shift between the stationary and fluctuating components of the potential, but also on the temperature of the system and the frequency of fluctuations, i.e., a possibility of temperature-frequency control of the direction of movement in the considered model has been found. Diagrams have been constructed that allow you to choose the ratio between the parameters of the nanomotor to create a flux of particles in the desired direction.


Keywords


Brownian motors; nanoscale mechanisms; diffusion transport; ratchet effect; directed motion of nanoparticles; modeling potentials in the theory of Brownian motors; temperature-frequency control

Full Text:

PDF (Українська)

References


1. Hänggi P., Marchesoni F. Artificial Brownian motors: Controlling transport on the nanoscale. Rev. Mod. Phys. 2009. 81: 387. https://doi.org/10.1103/RevModPhys.81.387

2. Reimann P. Brownian Motors: Noisy Transport far from Equilibrium. Phys. Rep. 2002. 361(2-4): 57. https://doi.org/10.1016/S0370-1573(01)00081-3

3. Cubero D., Renzoni F. Brownian Ratchets: From Statistical Physics to Bio and Nanomotors. (Cambridge, UK: Cambridge University Press, 2016). https://doi.org/10.1017/CBO9781107478206

4. Feynman R.P. There's Plenty of Room at the Bottom. Eng. Sci. 1960. 23(5): 22.

5. Gross M. Travels to the Nanoworld. (New York: Perseus, 1999).

6. Drexler K.E. Nanosystems: Molecular Machinery, Manufacturing and Computation. (N.Y.: Wiley, 1992).

7. Kottas G.S., Clarke L.I., Horinek D., Michl J. Artificial molecular motors. Chem. Rev. Washington, D.C. 2005. 105: 1281. https://doi.org/10.1021/cr0300993

8. Balzani V., Credi A., Silvi S., Venturi M. Artificial nanomachines based on interlocked molecular species: Recent advances. Chem. Soc. Rev. 2006. 35(11): 1135. https://doi.org/10.1039/b517102b

9. Kay E.R., Leigh D.A., Zerbetto F. Synthetic Molecular Motors and Mechanical Machines. Angew. Chem. 2007. 46(1-2): 72. https://doi.org/10.1002/anie.200504313

10. Lau B., Kedem O., Schwabacher J., Kwasnieski D., Weiss E.A. An introduction to ratchets in chemistry and biology. Mater. Horiz. 2017. 4(3): 310. https://doi.org/10.1039/C7MH00062F

11. Astumian, R. D., Hänggi P., Brownian motors. Phys. Today. 2002. 55 (11):33. https://doi.org/10.1063/1.1535005

12. Hänggi, P., Marchesoni F., Nori F., Brownian motors. Ann. Phys. 2005. 14: 51. https://doi.org/10.1002/andp.200410121

13. Korochkova T.Ye., Rozenbaum V.M., Shapochkina I.V. Sawtooth potential model in the theory of a brownian motors. Surface. 2015. 7(22): 12. [in Russian].

14. Rozenbaum V.M., Shapochkina I.V., Trakhtenberg L.I. Green's function method in the theory of Brownian motors. Physics-Uspekhi. 2019. 62(5): 496. https://doi.org/10.3367/UFNe.2018.04.038347

15. Ajdari A., Prost J. Drift induced by a spatially periodic potential of low symmetry - Pulsated dielctrophoresis. C.R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. TerreUnivers. 1992. 315(13): 1635.

16. Bartussek R., Hänggi P., Kissner J.G. Periodically rocked thermal ratchets. Europhys. Lett. 1994. 28(7): 459. https://doi.org/10.1209/0295-5075/28/7/001

17. Rozenbaum V.M., Shapochkina I.V., Lin S.H., Trakhtenberg L.I. Theory of Slightly Fluctuating Ratchets. JETP Lett. 2017. 105(8): 542. https://doi.org/10.1134/S0021364017080069

18. Vysotskaya U.A., Shapochkina I.V., Korochkova T.Ye., Rozenbaum V.M. Stochastic Brownian motors with small potential energy fluctuations. Him. Fiz. Tehnol. Poverhni. 2017. 8(3): 299. [in Russian]. https://doi.org/10.15407/hftp08.03.299

19. Shapochkina I.V., Korochkova T.Ye., Rozenbaum V.M., Bugaev A.S. Temperature-Frequency Controlling the Characteristics of a Pulsating Brownian Ratchet with Slightly Fluctuating Potential Energy. Nonlinear Phenomena in Complex Systems. 2021. 24(1): 71. https://doi.org/10.33581/1561-4085-2021-24-1-71-83

20. Rozenbaum V.M., Shapochkina I.V., Teranishi Y., Trakhtenberg L.I. High-temperature ratchets driven by deterministic and stochastic fluctuations Phys. Rev. E. 2019. 99(1): 012103-1-10. https://doi.org/10.1103/PhysRevE.99.012103

21. Rozenbaum V.M., Shapochkina I.V., Sheu S.-Y., Yang D.-Y., Lin S.H. High-temperature ratchets with sawtooth potentials. Phys. Rev. E. 2016. 94: 052140-1-052140-8. https://doi.org/10.1103/PhysRevE.94.052140




DOI: https://doi.org/10.15407/hftp15.02.159

Copyright (©) 2024 T. Ye. Korochkova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.