Investigation of SiC films obtained on a porous-Si/Si substrate
DOI: https://doi.org/10.15407/hftp15.02.221
Abstract
The paper describes the method of obtaining the SiC/porous-Si/Si heterostructure and the study of its structural and morphological properties. The method of obtaining heterostructures consisted of several stages: electrochemical etching of single-crystal silicon p-Si (111), annealing of porous Si in a CO atmosphere. The fabricated structures were characterized using scanning electron microscopy, X-ray spectral microanalysis, X-ray phase analysis, high-resolution diffractometry, X-ray reflectometry, and photoluminescence.
The method of high-resolution diffractometry made it possible to assess the state of the SiC/Si(001) system. On the 2Theta-omega diffractograms, in addition to the (111) reflection of the Si substrate in the region of 2 Theta = 35.67, the (111) reflection of the cubic SiC film is observed. This means that the formed SiC film is textured in the (111) growth direction of the silicon substrate. The classical technique of X-ray phase analysis showed the presence of a hexagonal phase in the SiC film. The concentration ratio of cubic to hexagonal phase is 80 % cubic and 20 % hexagonal. The RMS deformation of the lattice (ε) in such a structure is ε = 1∙10–2. The photoluminescence spectra of the SiC films of the experimental samples in most cases consist of narrow and broad bands and extend from the near ultraviolet to the entire visible spectrum. At the same time, in the range of wavelengths corresponding to the energy forbidden zones of hexagonal polytypes and cubic polytypes, a noticeable glow was observed in most of the samples. In some samples, luminescence in the area of hexagonal phases was predominant. In the photoluminescence spectra both at T = 77 K and at T = 300 K, a narrow line at a wavelength of ~ 371 nm is observed.
Keywords
References
1. Bacherikov Yu.Yu., Konakova R.V., Kocherov A.N., Lytvyn P.M., Lytvyn O.S., Okhrimenko O.B., Svetlichnyi A.M. Effect of microwave annealing on silicon dioxide/silicon carbide structures. Tech. Phys. 2003. 48(5): 598. https://doi.org/10.1134/1.1576474
2. Foisal A.R.M., Nguyen T., Dinh T., Nguyen T.K., Tanner P., Streed E.W., Dao D.V. 3C-SiC/Si Heterostructure: An Excellent Platform for Position-Sensitive Detectors Based on Photovoltaic Effect. ACS Appl. Mater. Interfaces. 2019. 11(43): 40980. https://doi.org/10.1021/acsami.9b15855
3. Suocheng Song, Zongqiang Gao, Bingheng Lu, Chonggao Bao, Baochao Zheng, Lei Wang. Performance optimization of complicated structural SiC/Si composite ceramics prepared by selective laser sintering. Ceram. Int. 2020. 46(1): 568. https://doi.org/10.1016/j.ceramint.2019.09.004
4. Grashchenko A.S., Kukushkin S.A., Osipov A.V., Redkov A.V. Vacancy growth of monocrystalline SiC from Si by the method of self-consistent substitution of atoms. Catal. Today. 2022. 397-399: 375. https://doi.org/10.1016/j.cattod.2021.08.012
5. Kuzmina V.O., Sinelnikov A.A., Soldatenko S.A., Sumets M. Activation energy of subgrain growth process and morphology evolution in β-SiC/Si(111) heterostructures synthesized by pulse photon treatment method in a methane atmosphere. J. Mater Sci.: Mater. Electron. 2018. 29: 20097. https://doi.org/10.1007/s10854-018-0141-7
6. Ryosuke Watanabe, Takahiro Tsukamoto, Koichi Kamisako, Yoshiyuki Suda. Crystallinity control of SiC grown on Si by sputtering method. J. Cryst. Growth. 2017. 463: 67. https://doi.org/10.1016/j.jcrysgro.2017.01.042
7. Masullo M., Bergamaschini R., Albani M., Kreiliger T., Mauceri M., Crippa D., La Via F., Montalenti F., von Känel H., Miglio L. Growth and Coalescence of 3C-SiC on Si (111) Micro-Pillars by a Phase-Field Approach. Materials. 2019. 12: 3223. https://doi.org/10.3390/ma12193223
8. Marzegalli A., Cortinovis A., Basso Basset F., Bonera E., Pezzoli F., Scaccabarozzi A., Isa F., Isella G., Zaumseil P., Capellini G., Schroeder Th., Miglio L. Exceptional thermal strain reduction by a tilting pillar architecture: Suspended Ge layers on Si (001). Mater. Des. 2017. 116: 144. https://doi.org/10.1016/j.matdes.2016.11.106
9. Albani M., Marzegalli A., Bergamaschini R., Mauceri M., Crippa D., La Via F., von Känel H., Miglio L. Solving the critical thermal bowing in 3C-SiC/Si(111) by a tilting Si pillar architecture. J. Appl. Phys. 2018. 123: 185703. https://doi.org/10.1063/1.5019325
10. Kidalov V., Dyadenchuk A., Bacherikov Yu., Zhuk A., Gorbaniuk T., Rogozin I., Kidalov Vitali. Structural and optical properties of ZnO films obtained on mesoporous Si substrates by the method of HF magnetron sputtering. Turk. J. Phys. 2020. 44: 57. https://doi.org/10.3906/fiz-1909-10
11. Dyadenchuk A.F., Kidalov V.V. Production of porous ZnSe by electrochemical etching method. Journal of Nano- and Electronic Physics. 2013. 5(3): 03033. [in Russian].
12. Kidalov V.V., Kukushkin S.A., Osipov A.V., Redkov A.V., Grashchenko A.S., Soshnikov I.P., Boiko M.E., Sharkov M.D., Dyadenchuk A.F. Properties of SiC Films Obtained by the Method of Substitution of Atoms on Porous Silicon. ECS J. Solid State Sci. Technol. 2018. 7(4): P1-P3. https://doi.org/10.1149/2.0061804jss
13. Bacherikov Yu.Yu., Konakova R.V., Milenin V.V., Okhrimenko O.B., Svetlichnyi A.M., Polyakov V.V. Changes in characteristics of gadolinium, titanium, and erbium oxide films on the SiC surface under microwave treatment. Semiconductors. 2008. 42(7): 868. https://doi.org/10.1134/S1063782608070191
14. Orlov L.K., Shteinman E.A., Ivina N.L., Vdovin V.I. Specific features and mechanisms of photoluminescence of nanostructured silicon carbide films grown on silicon in vacuum. Phys. Solid State. 2011. 53: 1798. https://doi.org/10.1134/S1063783411090228
DOI: https://doi.org/10.15407/hftp15.02.221
Copyright (©) 2024 V. V. Kidalov, A. F. Dyadenchuk, A. G. Zhuk, O. Y. Gudimenko, S. V. Simchenko
This work is licensed under a Creative Commons Attribution 4.0 International License.