Chemistry, Physics and Technology of Surface, 2024, 15 (3), 313-327.

Interfacial and temperature behaviors of water and solutions bound to water-soluble lignin powder



DOI: https://doi.org/10.15407/hftp15.03.313

V. M. Gun'ko, V. V. Turov

Abstract


Production of valuable industrial materials from lignins as byproducts of different origin is of importance to solve the utilization problem for large amounts of these byproducts. One of the corresponding pathways is the production of water-soluble lignins, for which, interactions with water and aqueous solutions play an important role in practical application efficiency of these materials. One could assume that interactions of lignins with bound water and solutions depend strongly on the dispersion media and the presence of various (e.g., polar and ion-generating) solutes in water. The interfacial and temperature behaviors of water (solutions) bound to lignin particles in wetted powders could be effectively studied using low-temperature 1H NMR spectroscopy applied to static samples that allows one to separate mobile and immobile phases vs. temperature below freezing point (Tf,b) of bulk liquid. At T < Tf,b several effects could be observed in wetted lignin powders such as confined space effects (CSE) in pores or voids between or inside crosslinked macromolecules, cryoscopic effects (CE) in bound solutions, partial freezing of liquids with cryoconcentration and differentiation of solutions, clusterization of bound liquids, etc. To elucidate some of these effects, wetted water-soluble lignin powders at a constant degree of hydration (h = 0.3 g/g) were studied in such dispersion media as air and chloroform-d alone or in a mixture with deuterated trifluoroacetic acid using the low-temperature 1H NMR spectroscopy method. Additionally, hydrated lignin molecules of different sizes were studied using quantum chemistry methods. Obtained results show that both CSE and CE affect the temperature behavior of bound water and related solutions. However, there is no their strong synergetic impact because the stronger bound the water (solution) the lower the activity of water as a solvent; i.e., CSE could partially inhibit CE. The obtained results are of interest in order to better understand different aspects of applications of water-soluble lignins under various conditions.


Keywords


water-soluble lignin; bound water; interfacial phenomena; confined space effect; cryoscopic effect; dispersion media effect

Full Text:

PDF

References


1. Ullmann's Encyclopedia of Industrial Chemistry. (Weinheim: Wiley-VCH, 2007).

2. Kirk-Othmer Encyclopedia of Chemical Technology. (John Wiley & Sons, Inc. 2001).

3. Sjöström E. Wood Chemistry: Fundamentals and Applications. Second ed. (Academic Press. 1993).

4. Rehman A., Nazir G., Heo K., Hussain S., Ikram M., Akhter Z., Algaradah M.M., Mahmood Q., Fouda A.M. A focused review on lignocellulosic biomass-derived porous carbons for effective pharmaceuticals removal: Current trends, challenges and future prospects. Sep. Purif. Technol. 2024. 330: 125356. https://doi.org/10.1016/j.seppur.2023.125356

5. Afraz M., Muhammad F., Nisar J., Shah A., Munir S., Ali G., Ahmad A. Production of value added products from biomass waste by pyrolysis: An updated review. Waste Management Bulletin. 2024. 1: 30. https://doi.org/10.1016/j.wmb.2023.08.004

6. Radoor S., Karayil J., Jayakumar A., Kandel D.R., Kim J.T., Siengchin S., Lee J. Recent advances in cellulose- and alginate-based hydrogels for water and wastewater treatment: A review. Carbohydr. Polym. 2024. 323: 121339. https://doi.org/10.1016/j.carbpol.2023.121339

7. Sahraeian S., Rashidinejad A., Golmakani M.-T. Recent advances in the conjugation approaches for enhancing the bioavailability of polyphenols. Food Hydrocolloids. 2024. 146: 109221. https://doi.org/10.1016/j.foodhyd.2023.109221

8. Mennani M., Kasbaji M., Benhamou A.A., Boussetta A., Kassab Z., El Achaby M., Grimi N., Moubarik A. The potential of lignin-functionalized metal catalysts - A systematic review. Renewable Sustainable Energy Rev. 2024. 189: 113936. https://doi.org/10.1016/j.rser.2023.113936

9. Jones I.D., Smol J.P. (editors). Wetzel's Limnology. Lake and River Ecosystems. 4th Edition. (Academic Press: Oxford, 2023).

10. Davin L.B., Lewis N.G. Lignin primary structures and dirigent sites. Curr. Opin. Biotechnol. 2005. 16(4): 407. https://doi.org/10.1016/j.copbio.2005.06.011

11. Heitner C., Dimmel D.R., Schmidt J.A. (editors). Lignin and Lignans. Advances in Chemistry. (Boca Raton: CRC Press, 2010).

12. Savy D., Cozzolino V., Vinci G., Nebbioso A., Piccolo A. Water-soluble lignins from different bioenergy crops stimulate the early development of maize (Zea mays, L.). Molecules. 2015. 20(11): 19958. https://doi.org/10.3390/molecules201119671

13. Tian D., Zhang J., Hu J., Huang M., Zhao L., Lei Y., Zou J., Zhang S., Shen F. A new water-soluble lignin incorporation enhanced the barrier performance of liquid mulching film. Chem. Eng. J. 2023. 452: 139383. https://doi.org/10.1016/j.cej.2022.139383

14. Zhang Y., Ren H., Maarof H., Udin S.M., Liu Y., Li M., Alias H., Duan E. The effect of water content on lignin solubilization in deep eutectic solvents. J. Mol. Liq. 2023. 374: 121271.https://doi.org/10.1016/j.molliq.2023.121271

15. Wang R., Zheng L., Xu Q., Xu L., Wang D., Li J., Lu G., Huang C., Wang Y. Unveiling the structural properties of water-soluble lignin from gramineous biomass by autohydrolysis and its functionality as a bioactivator (anti-inflammatory and antioxidative). Inter. J. Bio. Macromol. 2021. 191: 1087. https://doi.org/10.1016/j.ijbiomac.2021.09.124

16. Lai C.-Y., Sun Y.-M., Liu Y.-L. Water-soluble ozonated lignin as a hydrophilic modifier for poly(vinyl alcohol) membranes for pervaporation desalination. J. Membrane Sci. 2023. 685: 121959. https://doi.org/10.1016/j.memsci.2023.121959

17. Bajwa D.S., Pourhashem G., Ullah A.H., Bajwa S.G. A concise review of current lignin production, applications, products and their environmental impact. Ind. Crops Prod. 2019. 139: 111526. https://doi.org/10.1016/j.indcrop.2019.111526

18. Hodásová Ľ., Jablonský M., Škulcová A., Ház A. Lignin, potential products and their market value. Wood Res. 2015. 60(6): 973.

19. Budnyak T.M., Piątek J., Pylypchuk I.V., Klimpel M., Sevastyanova O., Lindström M., Gun'ko V.M., Slabon A. Membrane-filtered kraft lignin-silica hybrids as bio-based sorbents for cobalt(ii) ion recycling. ACS Omega. 2020. 5(19): 10847. https://doi.org/10.1021/acsomega.0c00492

20. Zhou N., Thilakarathna W.P.D.W., He Q.S., Rupasinghe H.P.V. A review: Depolymerization of lignin to generate high-value bio-products: Opportunities, challenges, and prospects. Front. Energy Res. 2022. 9: 758744. https://doi.org/10.3389/fenrg.2021.758744

21. Xu Z., Lei P., Zhai R., Wen Z., Jin M. Recent advances in lignin valorization with bacterial cultures: microorganisms, metabolic pathways, and bio-products. Biotechnol. Biofuels. 2019. 12 :32. https://doi.org/10.1186/s13068-019-1376-0

22. Kong F., Wang S., Price J.T., Konduri M.K.R., Fatehi P. Water soluble kraft lignin-acrylic acid copolymer: synthesis and characterization. Green Chem. 2015. 17(8): 4355. https://doi.org/10.1039/C5GC00228A

23. Ohara T., Yuasa K., Kimura K., Komaki S., Nishina Y., Matsukawa A. A novel mechanical plant compression system for biomass fuel and acquisition of squeezed liquid with water-soluble lignin as anti-virus materials. J. Mater. Cycles Waste Manag. 2023. 25: 249. https://doi.org/10.1007/s10163-022-01531-5

24. Xu C., Ferdosian F. Conversion of Lignin into Bio-Based Chemicals and Materials. Green Chemistry and Sustainable Technology. (Berlin: Springer, 2017). https://doi.org/10.1007/978-3-662-54959-9

25. Wang H., Pu Y., Ragauskas A., Yang B. From lignin to valuable products-strategies, challenges, and prospects. Bioresource Technology. 2019. 271: 449. https://doi.org/10.1016/j.biortech.2018.09.072

26. Liu Q., Matsushita Y., Aoki D., Fukushima K. Industrial utilizations of water-soluble sulfuric acid lignin prepared by hydrothermal treatment as flocculant and dispersant. J. Wood Sci. 2019. 65: 18. https://doi.org/10.1186/s10086-019-1797-1

27. Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013). https://doi.org/10.1201/b14202

28. Franks F. Biophysics and Biochemistry at Low Temperatures. (Cambridge: Cambridge University Press. 1985).

29. Grout B.W.W., Morris G.J. (editors). The Effects of Low Temperatures on Biological Systems. (London: Edward and Arnold Publishers. 1987).

30. Kimmich R. NMR Tomography, Diffusometry, Relaxometry. (Heidelberg: Springer, 1997).

31. Petrov O.V., Furó I. NMR cryoporometry: Principles, applications and potential. Prog. Nuclear Magn. Reson. Spectr. 2009. 54(2): 97. https://doi.org/10.1016/j.pnmrs.2008.06.001

32. Mitchell J., Webber J.B.W., Strange J.H. Nuclear magnetic resonance cryoporometry. Phys. Rep. 2008. 461(1): 1. https://doi.org/10.1016/j.physrep.2008.02.001

33. Chaplin M. Water structure and science. http://www1.lsbu.ac.uk/water/, accessed on 2 October, 2023.

34. Halleraker H.V., Barth T. Quantitative NMR analysis of the aqueous phase from hydrothermal liquefaction of lignin. J. Anal. Appl. Pyrolysis. 2020. 151: 104919. https://doi.org/10.1016/j.jaap.2020.104919

35. Zhang L., Yan L., Wang Z., Laskar D.D., Swita M.S., Cort J.R., Yang B. Characterization of lignin derived from water-only and dilute acid flowthrough pretreatment of poplar wood at elevated temperatures. Biotechnol. Biofuels. 2015. 8: 203. https://doi.org/10.1186/s13068-015-0377-x

36. Pylypchuk I.V., Lindén P.A., Lindström M.E., Sevastyanova O. New insight into the surface structure of lignin nanoparticles revealed by 1H liquid-state NMR spectroscopy. ACS Sustainable Chem. Eng. 2020. 8(36): 13805. https://doi.org/10.1021/acssuschemeng.0c05119

37. Burger R., Lindner S., Rumpf J., Do X.T., Diehl B.W.K., Rehahn M., Monakhova Y.B., Schulze M. Benchtop versus high field NMR: Comparable performance found for the molecular weight determination of lignin. J. Pharm. Biomed. Anal. 2022. 212: 114649. https://doi.org/10.1016/j.jpba.2022.114649

38. Harriss M.G., Milne J.B. The trifluoroacetic acid solvent system. Part V. Cryoscopic measurements. Can. J. Chem. 1976. 54(19): 3031. https://doi.org/10.1139/v76-429

39. Cady H.H., Cady G.H. Freezing points of the system water-trifluoroacetic acid. J. Am. Chem. Soc. 1954. 76(3): 915. https://doi.org/10.1021/ja01632a087

40. Rasmussen D.H., MacKenzie A.P. Phase diagram for the system water-dimethylsulphoxide. Nature. 1968. 220: 1315. https://doi.org/10.1038/2201315a0

41. Technical Bulletin Reaction Solvent Dimethyl Sulfoxide (105B DMSO). Gaylord Chemical. 2011. 105FINALnoframe2.doc (chemistry-chemists.com).

42. Lam S.Y., Benoit R.L. Some thermodynamic properties of the dimethylsulfoxide-water and propylene carbonate-water systems at 25 °C. Can. J. Chem. 1974. 52(5): 718. https://doi.org/10.1139/v74-113

43. Lü P., Zhao G., Zhang X., Yin J., Bao J. Measurement and prediction on the surface properties of dimethyl sulfoxide/water mixtures. Chem. Res. Chin. Univ. 2016. 32: 100. https://doi.org/10.1007/s40242-016-5297-1

44. Mohan G., Venkataraman M., Gomez-Vidal J., Coventry J. Assessment of a novel ternary eutectic chloride salt for next generation high-temperature sensible heat storage. Energy Convers. Manage. 2018. 167: 156. https://doi.org/10.1016/j.enconman.2018.04.100

45. Viola W., Andrew T.L. An aqueous eutectic electrolyte for low-cost, safe energy storage with an operational temperature range of 150 °C, from -70 to 80 °C. J. Phys. Chem. C. 2021. 125(1): 246. https://doi.org/10.1021/acs.jpcc.0c09676

46. Barnes W.H., Maass O. Freezing points and heat capacities of aqueous solutions of potassium chloride. Can. J. Res. 1930. 2(3): 218. https://doi.org/10.1139/cjr30-017

47. Haghighi H., Chapoy A., Tohidi B. Freezing point depression of electrolyte solutions: experimental measurements and modeling using the cubic-plus-association equation of state. Ind. Eng. Chem. Res. 2008. 47(11): 3983. https://doi.org/10.1021/ie800017e

48. Kamide K. Colligative properties. Comprehensive Polymer Science and Supplements. 1989. 4: 75. https://doi.org/10.1016/B978-0-08-096701-1.00004-5

49. Kamide K., Dobashi T. Physical Chemistry of Polymer Solutions. Theoretical Background. (Elsevier, 2000).

50. Reuter J.H., Perdue E.M. Calculation of molecular weights of humic substances from colligative data: Application to aquatic humus and its molecular fractions. Geochim. Cosmochim. Acta. 1981. 45(11): 2017. https://doi.org/10.1016/0016-7037(81)90056-9

51. Stepanos J.J., Addison A.W. Chemical Thermodynamics and Statistical Aspects: Questions to Ask in Fundamentals and Principle. (Elsevier, 2023).

52. Mazza D., Canuto E. Fundamental Chemistry with Matlab. (Elsevier, 2022).

53. Gaffney J.S., Marley N.A. General Chemistry for Engineers. (Elsevier, 2018).

54. DeVoe H. Thermodynamics and Chemistry, LibreTexts, Chemistry. (California State University, 2022).

55. Pancerz M., Ptaszek A., Sofińska K., Barbasz J., Szlachcic P., Kucharek M., Łukasiewicz M. Colligative and hydrodynamic properties of aqueous solutions of pectin from cornelian cherry and commercial apple pectin. Food Hydrocolloids. 2019. 89: 406. https://doi.org/10.1016/j.foodhyd.2018.10.060

56. Gonda I., Groom C. V. Colligative properties of disodium cromoglycate aqueous solutions in relation to their phase diagram. J. Colloid Interface Sci. 1983. 92: 289. https://doi.org/10.1016/0021-9797(83)90146-7

57. Nagvekar M., Tihminlioglu F., Danner R.P. Colligative properties of polyelectrolyte solutions. Fluid Phase Equilib. 1998. 145(1): 15. https://doi.org/10.1016/S0378-3812(97)00304-X

58. Mjallal I., Feghali E., Hammoud M., Habchi C., Lemenand T. Exploring the colligative properties of Arachidic acid for potential use as PCM. Solar Energy. 2021. 214: 19. https://doi.org/10.1016/j.solener.2020.11.020

59. Gun'ko V.M., Turov V.V., Zarko V.I., Dudnik V.V., Tischenko V.A., Voronin E.F., Kazakova O.A., Silchenko S.S., Barvinchenko V.N., Chuiko A.A. Aqueous suspensions of fumed silica and adsorption of proteins. J. Colloid Interface Sci. 1997. 192(1): 166. https://doi.org/10.1006/jcis.1997.4985

60. Gun'ko V.M., Voronin E.F., Zarko V.I., Goncharuk E.V., Turov V.V., Pakhovchishin S.V., Pakhlov E.M., Guzenko N.V., Leboda R., Skubiszewska-Zięba J., Janusz W., Chibowski S., Chibowski E., Chuiko A.A. Interaction of poly(vinyl pyrrolidone) with fumed silica in dry and wet powders and aqueous suspensions. Colloids Surf. A. 2004. 233(1-3): 63. https://doi.org/10.1016/j.colsurfa.2003.11.024

61. Mironyuk I.F., Gun'ko V.M., Vasylyeva H.V., Goncharuk O.V., Tatarchuk T., Mandzyuk V.I., Bezruka N.A., Dmytrotsa T.V. Effects of enhanced clusterization of water at a surface of partially silylated nanosilica on adsorption of cations and anions from aqueous media. Microporous Mesoporous Mater. 2019. 277: 95. https://doi.org/10.1016/j.micromeso.2018.10.016

62. Turov V.V., Gun'ko V.M., Barvinchenko V.N., Rugal A.A., Turova A.A., Fedyanina V.V., Hydration of cellulose with the presence of quercetin and organic solvents. Chemistry, Physics, and Technology of Surface. 2009. 15: 169.

63. Mallamace F., Corsaro C., Broccio M., Branca C., González-Segredo N., Spooren J., Chen S.-H. Stanley H.E. NMR evidence of a sharp change in a measure of local order in deeply supercooled confined water. Proc. Natl. Acad. Sci. USA. 2008. 105(35): 12725. https://doi.org/10.1073/pnas.0805032105

64. Gun'ko V.M., Turov V.V., Krupska T.V., Borysenko M.V. Surroundings effects on the interfacial and temperature behaviors of NaOH/water bound to hydrophilic and hydrophobic nanosilicas. J. Colloid Interface Sci. 2023. 634: 93. https://doi.org/10.1016/j.jcis.2022.12.027

65. Gun'ko V.M., Turov V.V., Pakhlov E.M., Krupska T.V., Charmas B. Effect of water content on the characteristics of hydro-compacted nanosilica. Appl. Surf. Sci. 2018. 459: 171. https://doi.org/10.1016/j.apsusc.2018.07.213

66. Gun'ko V.M., Turov V.V., Goncharuk O.V., Pakhlov E.M., Matkovsky O.K. Interfacial phenomena at a surface of individual and complex fumed nanooxides. Surface. 2019. 11(26): 3. https://doi.org/10.15407/Surface.2019.11.003

67. Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk E.V., Gerashchenko I.I., Turova A.A., Mironyuk I.F., Leboda R., Skubiszewska-Zięba J., Janusz W. Comparative characterization of polymethylsiloxane hydrogel and silylated fumed silica and silica gel. J. Colloid Interface Sci. 2007. 308(1): 142. https://doi.org/10.1016/j.jcis.2006.12.053

68. Gun'ko V.M., Turov V.V., Krupska T.V., Protsak I.S., Borysenko M.V., Pakhlov E.M. Polymethylsiloxane alone and in composition with nanosilica under various conditions. J. Colloid Interface Sci. 2019. 541: 213. https://doi.org/10.1016/j.jcis.2019.01.102

69. Gun'ko V.M., Turov V.V. Nanostructured systems based on polymethylsiloxane and nanosilicas with hydrophobic and hydrophilic functionalities. Colloids Surf. A. 2023. 677: 132448. https://doi.org/10.1016/j.colsurfa.2023.132448

70. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A. Jr., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. Gaussian 16, Revision C.02. (Gaussian, Inc., Wallingford CT, 2019).

71. Barca G.M.J., Bertoni C., Carrington L., Datta D., De Silva N., Deustua J.E., Fedorov D.G., Gour J.R., Gunina A.O., Guidez E., Harville T., Irle S., Ivanic J., Kowalski K., Leang S.S., Li H., Li W., Lutz J.J., Magoulas I., Mato J., Mironov V., Nakata H., Pham B.Q., Piecuch P., Poole D., Pruitt S.R., Rendell A.P., Roskop L.B., Ruedenberg K. Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys. 2020. 152: 154102. https://doi.org/10.1063/5.0005188

72. Marenich A.V., Cramer C.J., Truhlar D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 2009. 113(18): 6378. https://doi.org/10.1021/jp810292n

73. Stewart J.J.P. MOPAC2022. Stewart Computational Chemistry. web: HTTP://OpenMOPAC.net. 2023. (accessed on 30.09.2023, Ver. 22.1).

74. Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., Ferrin T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021. 30(1): 70. https://doi.org/10.1002/pro.3943

75. Avogadro 2. https://two.avogadro.cc/. Ver. 1.98.1. 2023.

76. Pedretti A., Mazzolari A., Gervasoni S., Fumagalli L., Vistoli G. The VEGA suite of programs: a versatile platform for cheminformatics and drug design projects. Bioinformatics. 2021. 37(8): 1174. https://doi.org/10.1093/bioinformatics/btaa774

77. Jmol: an open-source Java viewer for chemical structures in 3D (Ver. 16.1.47). http://www.jmol.org/.

78. Gun'ko V.M. Atomic charge distribution functions as a tool to analyze electronic structure of molecular and cluster systems. Intern. J. Quantum Chem. 2021. 121(14): e26665. https://doi.org/10.1002/qua.26665




DOI: https://doi.org/10.15407/hftp15.03.313

Copyright (©) 2024 V. M. Gun'ko, V. V. Turov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.