A study on the interaction of gold nanoparticles with sodium sulfacetamide
DOI: https://doi.org/10.15407/hftp15.03.349
Abstract
The present research is devoted to the investigation of a nanosystem including gold nanoparticles in an aqueous solution of sodium sulfacetamide in order to determine the nature and efficiency of their interaction depending on the concentration and pH of the medium. Sodium sulfacetamide is of interest due to the possibility of its use in the composition of new hydrogel materials with incorporated gold nanoparticles for the development of ophthalmic implants. Gold nanoparticles with an average size of 20 nm, obtained by hydrothermal synthesis, were used. The study of the cytotoxicity of sodium sulfacetamide based on the integral index of the metabolic activity of MA-104 cells established concentrations that are the basis for explaining the possible toxic effect of materials impregnated with sodium sulfacetamide solutions. The concentration of 0.1 % sodium sulfacetamide solution after 24 hours of contact with cells and 0.05 % after 48 hours of contact should be considered as indifferent. The effectiveness of the interaction of sodium sulfacetamide and gold nanoparticles was evaluated by UV-Vis spectroscopy, electrokinetic measurements and scanning electron microscopy. Spectral studies of a suspension of gold nanoparticles in sodium sulfacetamide solutions in the range of therapeutic concentrations of 5.0÷30.0 % revealed a non-monotonic concentration-dependent effect of the sulfonamide medicine on the absorption intensity in the visible and ultraviolet ranges. The broadening of the spectral band of the surface plasmon resonance of gold nanoparticles in the presence of increasing concentrations of sulfacetamide and the appearance of an absorption band in the long-wave region were found. The peak shifts in the UV spectra after the addition of gold nanoparticles to sodium sulfacetamide were estimated. An increase in the negative value of the electrokinetic potential of gold nanoparticles under the influence of sulfacetamide from –26.2 mV to –41.4 mV was found. The data obtained indicate the existence of a chemical interaction between gold nanoparticles and sodium sulfacetamide solutions, which makes it possible to determine the conditions of their use in composite materials for biomedical purposes to reduce toxicity and leaching rate.
Keywords
References
1. Van Rijt S., Habibovic P. Enhancing regenerative approaches with nanoparticle. J. R. Soc. Interface. 2017. 14(129): 20170093. https://doi.org/10.1098/rsif.2017.0093
2. Ko W.C., Wang S.J., Hsiao C.Y., Hung C.T., Hsu Y.J., Chang D.C., Hung C.F. Pharmacological role of functionalized gold nanoparticles in disease applications. Molecules. 2022. 27(5): 1551. https://doi.org/10.3390/molecules27051551
3. Vial S., Reis R.L., Oliveira J.M. Recent advances using gold nanoparticles as a promising multimodal tool for tissue engineering and regenerative medicine. Curr. Opin. Solid State Mater. Sci. 2017. 21(2): 92. https://doi.org/10.1016/j.cossms.2016.03.006
4. Sereemaspun A., Hongpiticharoen P., Royanathanes R., Maneewattanapinyo P., Ekgasit S., Warisnoicharoen W. Inhibition of Cytochrome P450 Enzymes by metallic nanoparticles: a preliminary to nanogenomics. Int. J. Pharm. 2008. 4(6): 492. https://doi.org/10.3923/ijp.2008.492.495
5. Liu F., Wang L., Wang H., Yuan L., Li J., Brash J.L., Chen H. Modulating the activity of protein conjugated to gold nanoparticles by site-directed orientation and surface density of bound protein. ACS Appl. Mater. Interfaces. 2015. 7(6): 3717. https://doi.org/10.1021/am5084545
6. Rajakumari R., Tharayil A., Thomas S., Kalarikkal N. Hybrid Nanostructures for Biomedical Applications. In: Hybrid Phosphor Materials. Synthesis, Characterization and Applications. (Ed. IIUCNN, Mahatma Gandhi University, Kottayam, India, 2022). https://doi.org/10.1007/978-3-030-90506-4_12
7. Wekwejt M., Dziaduszewska M., Pałubicka A. The problem of infections associated with implants - an overview. European Journal of Medical Technologies. 2018. 4(21): 19.
8. Ovung A., Bhattacharyya J. Sulfonamide drugs: structure, antibacterial property, toxicity, and biophysical interactions. Biophys. Rev. 2021. 13(2): 259. https://doi.org/10.1007/s12551-021-00795-9
9. Azevedo-Barbosa H., Dias D.F., Franco L.L., Hawkes J.A., Carvalho D.T. From antibacterial to antitumour agents: a brief review on the chemical and medicinal aspects of sulfonamides. Mini-Rev. Med. Chem. 2020. 20(19): 2052. https://doi.org/10.2174/1389557520666200905125738
10. Ahmad l., Ahmad T., Usmanghani K. Sulfacetamide. In: Analytical profiles of drug substances and excipients. (Academic Press, Inc., 1994). https://doi.org/10.1016/S0099-5428(08)60610-3
11. da Silva G.R, Fialho S.L., Siqueira R.C., Jorge R., Cunha Júnior A.S. Implants as drug delivery devices for the treatment of eye diseases. Braz. J. Pharm. Sci. 2010. 46(3): 585. https://doi.org/10.1590/S1984-82502010000300024
12. Vislohuzova T., Rozhnova R., Galatenko N. Development and research of polyurethane foam composite materials with albucid. Am. J. Polym. Sci. Technol. 2021. 7(3): 38. https://doi.org/10.11648/j.ajpst.20210703.11
13. Samchenko Yu.M., Dybkova S.M., Maletskyy A.P., Kernosenko L.O., Gruzina T.G., Pasmurtseva N.O., Rieznichenko L.S., Poltoratska T.P., Liutko O.B., Vitrak K.V., Bigun N.M., Vorotytskyi P.V., Mamyshev I.Ie. Antimicrobial effects of hydrogel implants incorporating gold nanoparticles and albucide and developed for reconstructive surgery in the orbit and periorbital area. Journal of Ophthalmology. 2023. 5(514): 27. https://doi.org/10.31288/oftalmolzh202352733
14. Carnovale C., Bryant G., Shukla R., Bansal V. Identifying trends in gold nanoparticle toxicity and uptake: size, shape, capping ligand, and biological corona. ACS Omega. 2019. 4(1): 242. https://doi.org/10.1021/acsomega.8b03227
15. García-Torra V., Cano A., Espina M., Ettcheto M., Camins A., Barroso E., Vazquez-Carrera M., García M.L., Sánchez-López E., Souto E.B. State of the art on toxicological mechanisms of metal and metal oxide nanoparticles and strategies to reduce toxicological risks. Toxics. 2021. 9(8): 195. https://doi.org/10.3390/toxics9080195
16. Chiba K., Kawakami K., Tohyama K. Simultaneous evaluation of cell viability by neutral red, MTT and crystal violet staining assays of the same cells. Toxicol. in Vitro. 1998. 12(3): 251. https://doi.org/10.1016/S0887-2333(97)00107-0
17. Saotome K., Morita H., Umeda M. Cytotoxicity test with simplified crystal violet staining method using microtitre plates and its application to injection drugs. Toxicol. in Vitro. 1989. 3(4): 317. https://doi.org/10.1016/0887-2333(89)90039-8
18. Turkevich J., Hillier J., Stevenson P.C. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951. 11: 55. https://doi.org/10.1039/df9511100055
19. Soldatkin O.O., Soldatkina O.V., Piliponskiy I.I., Rieznichenko L.S., Gruzina T.G., Dybkova S.M., Dzyadevych S.V., Soldatkin A.P. Application of gold nanoparticles for improvement of analytical characteristics of conductometric enzyme biosensors. Appl. Nanosci. 2022. 12: 995. https://doi.org/10.1007/s13204-021-01807-6
20. Dukhin S.S., Deriagin B.V. Electrophoresis. (Moscow: Nauka, 1976). [in Russian].
21. Galatenko N.A., Kuliesh D.V., Narazhaiko L.F., Zakashun T.Iu., Maletskyy A.P., Bigun N.M. Assessing in vitro cytotoxicity and pH of extracts of synthetic polymers made of cross-linked polyurethane composite with immobilized albucide. Journal of Ophthalmology. 2020. 4: 56. https://doi.org/10.31288/oftalmolzh202045661
22. Mohammadpour R., Safarian S., Sheibani N., Norouzi S., Razazan A. Death іnducing and сytoprotective autophagy in T-47D cells by two common antibacterial drugs: sulfathiazole and sulfacetamide. Cell Biol. Int. 2013. 37(4): 348. https://doi.org/10.1002/cbin.10047
23. Annur S., Santosa S.J., Aprilita H. pH dependence of size control in gold nanoparticles synthesized at room temperature. Orient. J. Chem. 2018. 34(5): 2305. https://doi.org/10.13005/ojc/340510
24. Rizak H.V. Course of lectures on pharmaceutical chemistry: for medical students by pharmacy specialty. Book 2. (Uzhhorod: FOP Sabov A.M., 2022). [in Ukrainian].
25. Ahmed S., Anwar N., Sheraz M.A., Ahmad I. Validation of a stability-indicating spectrometric method for the determination of sulfacetamide sodium in pure form and ophthalmic preparations. J. Pharm. Biol. Sci. 2017. 9: 26. https://doi.org/10.4103/jpbs.JPBS_184_16
26. Samchenko Yu.M., Pasmurtseva N.O., Ulberg Z.R. Application of UV spectroscopy to study the diffusion of drug compounds from medical hydrogels. Zurnal Hromatograficnogo tovaristva. 2010. 10(1-4): 21. [in Russian].
27. Buglak A.A., Kononov A.I. Comparative study of gold and silver interactions with amino acids and nucleobases. RSC Adv. 2020. 10: 34149. https://doi.org/10.1039/D0RA06486F
28. Perea C.G., Restrepo O.J. Use of amino acids for gold dissolution. Hydrometallurgy. 2018. 177: 79. https://doi.org/10.1016/j.hydromet.2018.03.002
29. Eksteen J.J., Oraby E.A. The leaching and adsorption of gold using low concentration amino acids and hydrogen peroxide: Effect of catalytic ions, sulfide minerals and amino acid type. Minerals Engineering. 2015. 70: 36. https://doi.org/10.1016/j.mineng.2014.08.020
30. Clogston J.D., Patri A.K. Characterization of nanoparticles intended for drug delivery, methods in molecular biology. In: Zeta potential measurement. (Springer Science and Business Media LLC, 2011). https://doi.org/10.1007/978-1-60327-198-1_6
DOI: https://doi.org/10.15407/hftp15.03.349
Copyright (©) 2024 V. I. Podolska, L. S. Rieznichenko, L. M. Yakubenko, T. G. Gruzina, N. M. Zholobak, Yu. M. Samchenko, S. M. Dybkova
This work is licensed under a Creative Commons Attribution 4.0 International License.