Synthesis and physico-chemical properties of high-quality expanded graphite
DOI: https://doi.org/10.15407/hftp15.03.378
Abstract
The purpose of the work is to establish the possibility of obtaining expanded graphite of high purity (carbon content more than 99.5 % wt.) from flotation-enriched graphite (carbon content 94–97 % wt.) by combining into one process intercalation of graphite with a solution of potassium dichromate in concentrated sulfuric acid with subsequent hydrolysis, and chemical purification using solutions of ammonium bifluoride in sulfuric or hydrochloric acid and Trilon B in an alkaline buffer as purification reagents, and to confirm this possibility by quantum chemical calculations. It has been experimentally shown that combining oxidized graphite synthesis and its chemical purification into one process allows obtaining expanded graphite of high purity, with a carbon content of 99.75–99.85 % wt. The methods of X-ray diffraction and thermogravimetry show that the interaction of oxidized graphite (the residual compound of intercalation of graphite with sulfuric acid) with cleaning reagents does not reduce the ability to expand. The magnitude of the mass loss of oxidized graphite according to various variants of chemical post-cleaning and the temperature range of such loss remain practically unchanged.
Quantum chemical calculations of the adsorption energy (∆Eads) of one molecule of Trilon B on the surface of a graphene-like plane (GLP), the complexation reaction of metal sulfates, the energy effect of the interaction of Trilon B with sulfates of alkaline earth metals in an aqueous solution, and with the participation of the surface of the graphene plane were carried out using the GAMESS (US) program by the density functional theory (DFT) method with the B3LYP functional and the 6-31G(d,p) basis set, taking into account the Grimme D3 dispersion correction within the PCM polarizable continuum. The results of the analysis of quantum chemical calculations indicate that the Trilon B molecule is better physically sorbed on the oxidized GLP (–412 kJ/mol) than on its native form (–188 kJ/mol). The values of the energy effect of the complexation of magnesium and calcium cations with Trilon B have a negative value both in an aqueous solution and in the presence of the oxidized form of GLP. This indicates the thermodynamic probability of this process, which is consistent with the experimental results. Regardless of the nature of the cation, its interaction with Trilon B is thermodynamically more likely in an aqueous solution than in the adsorbed state on the surface of oxidized GLP.
Keywords
References
1. Yanchenko V.V., Pyatkovskyi M.L., Yatsyuk O.P., Revo S.L., Sementsov Yu.I. Regarding the use of thermally expanded graphite in the equipment of high-risk industries. Scientific Bulletin of the Fire Safety Research Institute of Ukraine. 2003. 1(7): 139.
2. Yanchenko V.V., Sementsov Yu.I. Sealing materials from thermally expanded graphite. In: Operational safety of compressor, pumping equipment and pipeline fittings. Proc.5th scientific and technical seminar (October 11-15, 2004, Odesa). P. 110.
3. Chernysh I.G. Natural graphite and materials based on it. Chem. Prom. Ukraine. 1994. 4: 3. [in Ukrainian].
4. Zayats M.M. Graphite production of the Zavalievsky deposit. Chem. Industry Ukraine. 1994. 4: 9. [in Ukrainian].
5. Quan Y., Liu Q., Li K., Zhang H., Yuan L. Highly efficient purification of natural coaly graphite via an electrochemical method. Sep. Purif. Technol. 2022. 281: 119931. https://doi.org/10.1016/j.seppur.2021.119931
6. Sementsov Y.I., Revo S.L., Ivanenko K.O. Thermally expanded graphite. (Kyiv: Interservice, 2016). [in Ukrainian].
7. Chung D.D.L. A review of exfoliated graphite. J. Mater. Sci. 2016. 51: 554. https://doi.org/10.1007/s10853-015-9284-6
8. Muzyka R., Kwoka M., Smedowski L., Diez N., Gryglewicz G. Oxidation of graphite by different modified Hummers methods. New Carbon Mater. 2017. 32(1): 15. https://doi.org/10.1016/S1872-5805(17)60102-1
9. Van Heerden X., Badenhorst H. The influence of three different intercalation techniques on the microstructure of exfoliated graphite. Carbon. 2015. 88: 173. https://doi.org/10.1016/j.carbon.2015.03.006
10. Chernysh I.G., Karpov I.I., Prikhodko G.P., Shai V.M. Physico-chemical properties of graphite and its compounds. (Kyiv: Naukova Dumka, 1990). [in Russian].
11. Patent KR 101865262B1. Seo Joo-beom, Kim Hyeong-seok, Bae Inguk Director, Han Kwon, Jang Hee-dong. Method for refining carbon concentration using edta. 2018. [in Korean].
12. Patent CN 113233454A. Liu Wei, Zhao Zhenyu, Xia Xiaomin, Song Yintao. Method for producing high-purity graphite by using recovered acid. 2021. [in Chinese].
13. Patent CN 114890415A. Ye Houli. Preparation method of fine flake high-purity expanded graphite. 2022. [in Chinese].
14. Patent CN 114790000A. Xu Weigang, Lu Zhuojun, Yu Ye Sheng. High-temperature-resistant sealing material based on expanded graphite and preparation method the reof. 2022. [in Chinese].
15. Patent US 4350576. Watanabe N., Kondo T., Ishiguro J. Method of producing a graphite intercalation compound. 1982.
16. Sementsov Yu.I., Pyatkovskyi M.L. Expanded graphite. In: Nonorganic material science. Materials and technologies. Band 2, book 2. (Kyiv: Scientific Opinion, 2008). P. 410.
17. Metrot A., Fuselier G. The graphite-sulfate lamellar compounds - I. Thermodynamic properties, undated. Carbon. 1984. 22(2): 131. https://doi.org/10.1016/0008-6223(84)90200-8
18. Foreman M.M., Terry L.M., Mathias J. Weber Binding Pocket Response of EDTA Complexes with Alkaline Earth Dications to Stepwise Hydration-Structural Insight from Infrared Spectra. J. Phys. Chem. A. 2023. 127(25): 5374. https://doi.org/10.1021/acs.jpca.3c02624
19. Jeremić M.S., Radovanović M.D., Klisurić O.R., Belošević S.K., Matović Z.D. Synthesis and characterization of the trans(O6) isomer Ni(II) complex containing symmetrical edta-type ligand with mixed carboxylate and diamine rings: Quantum-mechanical evaluation of different isomers. Inorg. Chim. Acta. 2019. 495: 118954. https://doi.org/10.1016/j.ica.2019.118954
20. Jeremić M.S., Radovanović M.D., Heinemann F.W., Vasojevic M.M., Matovic Z.D. Structural and theoretical investigations of the Rh(III) and Co(III) complexes containing symmetrical edta-type ligands with mixed carboxylate and diamine rings: Quantum-mechanical/NBO insight into stability of geometrical isomers. Polyhedron. 2019. 169: 89. https://doi.org/10.1016/j.poly.2019.04.053
21. Eckert S., Mascarenhas E.J., Mitzner R., Jay R.M., Pietzsch A., Fondell M., Vaz da CruzV., Föhlisch A. From the Free Ligand to the Transition Metal Complex: FeEDTA−Formation Seen at Ligand K‑Edges. Inorg. Chem. 2022. 61: 10321. https://doi.org/10.1021/acs.inorgchem.2c00789
22. Yuan Q., Kong X.-T., Hou G.-L., Jiang L., Wang X.-B. Photoelectron spectroscopic and computational studies of [EDTA·M(III)]- complexes (M = H3, Al, Sc, V-Co). Phys. Chem. Chem. Phys. 2018. 20: 19458. https://doi.org/10.1039/C8CP01548A
23. Cendic M., Deeth R.J., Meetsma A., Garribba E., Sanna D., Matovic Z.D. Chelating properties of EDTA-type ligands containing six-membered backbone ring toward copper ion: Structure, EPR and TD-DFT evaluation. Polyhedron. 2017. 124: 215. https://doi.org/10.1016/j.poly.2016.12.025
24. Foreman M.M., Weber J.M. Ion Binding Site Structure and the Role of Water in Alkaline Earth EDTA Complexes. J. Phys. Chem. Lett. 2022. 13: 8558. https://doi.org/10.1021/acs.jpclett.2c02391
25. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S.J., Windus T.L., Dupuis M., Montgomery J.A. General atomic and molecular electronic structure system. J. Comput. Chem. 1993. 14(11): 1347. https://doi.org/10.1002/jcc.540141112
26. Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988. 37(2): 785. https://doi.org/10.1103/PhysRevB.37.785
27. Becke A.D. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993. 98(7): 5648. https://doi.org/10.1063/1.464913
28. Grimme S., Ehrlich S., Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011. 32(7): 1456. https://doi.org/10.1002/jcc.21759
29. Grimme S. Density functional theory with London dispersion corrections. WIREs Comput. Mol. Sci. 2011. 1(2): 211. https://doi.org/10.1002/wcms.30
30. Cossi M., Barone V., Cammi R., Tomasi J. Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem. Phys. Lett. 1996. 255(4-6): 327. https://doi.org/10.1016/0009-2614(96)00349-1
31. Tomasi J., Mennucci B., Cammi R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005. 105(8): 2999. https://doi.org/10.1021/cr9904009
DOI: https://doi.org/10.15407/hftp15.03.378
Copyright (©) 2024 Yu. V. Hrebelna, E. M. Demianenko, M. I. Terets, V. V. Lobanov, S. V. Zhuravskyi, O. M. Ignatenko, K. O. Ivanenko, Yu. I. Gornikov, M. T. Kartel, Yu. I. Sementsov
This work is licensed under a Creative Commons Attribution 4.0 International License.