Chemistry, Physics and Technology of Surface, 2024, 15 (3), 429-438.

Caffeic acid complexes over alumina surface: FTIR, TPD MS and DFT calculations



DOI: https://doi.org/10.15407/hftp15.03.429

N. S. Nastasiienko, T. V. Kulik, M. M. Ilchenko, B. B. Palianytsia, A. I. Nastasiienko, G. Shaw, P. R. Davies, D. Wass, M. T. Kartel

Abstract


Caffeic acid (CA) is a phenolic, natural, biologically active compound with pronounced antioxidant and antimicrobial properties. It has a great potential for use in medicine and cosmetology and can also be used to obtain a number of other useful chemicals. Therefore, research aimed at improving the technologies for removing caffeic acid from plant raw materials and its processing is relevant. In our work, we have studied the complexes of caffeic acid with nanosized Al2O3, which is usually used in various plant biomass conversion technologies, using FT-IR spectroscopy, temperature-programmed desorption mass spectrometry (TPD MS), and DFT calculations. The FT-IR spectra analysis shows that CA can interact with aluminum oxide via both the carboxyl and phenolic groups. Based on the measured differences between carbonyl symmetric and asymmetrc vibrational peaks (Δν), it was found that carboxylate complexes of CA on the Al2O3 surface can have bidentate and monodentate structures. The mass spectrometric data analysis made it possible to identify compounds of 4-vinyl catechol, pyrocatechol, and phenol, which are decomposition products of the formed carboxylate and phenolic complexes. It was found that on the surface of the studied CA/Al2O3 samples, CA chelate complexes, formed with the participation of both OH groups of the aromatic ring, predominate.


Keywords


biomass; carboxylate complexes; chelate complexes; 4-vinyl catechol; pyrocatechol; phenol; pyrolysis; biomass conversion technologies

Full Text:

PDF

References


1. Stojković D., Petrović J., Soković M., Glamočlija J., Kukić‐Marković J., Petrović S. In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p‐coumaric acid and rutin, using food systems. J. Sci. Food Agric. 2013. 93(13): 3205. https://doi.org/10.1002/jsfa.6156

2. Zhaveh S., Mohsenifar A., Beiki M., Khalili St., Abdollahi A., Rahmani-Cherati T., Tabatabaei M. Encapsulation of Cuminum cyminum essential oils in chitosan-caffeic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Ind. Crops Prod. 2015. 69: 251. https://doi.org/10.1016/j.indcrop.2015.02.028

3. Anwar J., Spanevello R.M., Thomé G., Stefanello N., Schmatz R., Gutierres, J., Vieira J., Jucimara Baldissarelli, Carvalho F.B., da Rosa M.M., Rubin M.A., Fiorenza A., Morsch V.M., Schetinger M.R.C. Effects of caffeic acid on behavioral parameters and on the activity of acetylcholinesterase in different tissues from adult rats. Pharmacol. Biochem. Behav. 2012. 103(2): 386. https://doi.org/10.1016/j.pbb.2012.09.006

4. Khan F., Bamunuarachchi N.I., Tabassum, N., Kim Y.M. Caffeic acid and its derivatives: antimicrobial drugs toward microbial pathogens. J. Agric. Food Chem. 2021. 69(10): 2979. https://doi.org/10.1021/acs.jafc.0c07579

5. Lima V.N., Oliveira-Tintino C.D., Santos E.S., Morais L.P., Tintino S.R., Freitas T.S., Geraldo Y.S., Pereira R.L.S., Cruz R.P., Menezes I.R.A., Coutinho H.D. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol. Microb. Pathogen. 2016. 99: 56. https://doi.org/10.1016/j.micpath.2016.08.004

6. Russo G.I., Campisi D., Di Mauro M., Regis F., Reale G., Marranzano M., Morgia G. Dietary consumption of phenolic acids and prostate cancer: A case-control study in sicily, Southern Italy. Molecules. 2017. 22(12): 2159. https://doi.org/10.3390/molecules22122159

7. Muhammad Abdul Kadar N.N., Ahmad F., Teoh S.L., Yahaya M.F. Caffeic acid on metabolic syndrome: a review. Molecules. 2021. 26(18): 5490. https://doi.org/10.3390/molecules26185490

8. Clifford M.N. Chlorogenic acids and other cinnamates-nature, occurrence and dietary burden. J. Sci. Food Agric. 1999. 79(3): 362. https://doi.org/10.1002/(SICI)1097-0010(19990301)79:3<362::AID-JSFA256>3.0.CO;2-D

9. Manach C., Scalbert A., Morand C., Rémésy C., Jiménez L. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 2004. 79(5): 727. https://doi.org/10.1093/ajcn/79.5.727

10. Lattanzio V., Lattanzio V.M., Cardinali A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry: Advances in Research. 2006. 661(2): 23.

11. Qian S., Lu M., Zhou X., Sun S., Han Z., Song, H. Improvement in caffeic acid and ferulic acid extraction by oscillation-assisted mild hydrothermal pretreatment from sorghum straws. Bioresour. Technol. 2024. 396: 130442. https://doi.org/10.1016/j.biortech.2024.130442

12. Chandrasekar V., Martín‐González M.S., Hirst P., Ballard T.S. Optimizing Microwave‐Assisted Extraction of Phenolic Antioxidants from Red Delicious and Jonathan Apple Pomace. J. Food Process Eng. 2015. 38(6): 571. https://doi.org/10.1111/jfpe.12187

13. Bai X.L., Yue T.L., Yuan Y.H., Zhang H.W. Optimization of microwave‐assisted extraction of polyphenols from apple pomace using response surface methodology and HPLC analysis. J. Sep. Sci. 2010. 33(23-24): 3751. https://doi.org/10.1002/jssc.201000430

14. Zhang M., Wang D., Gao X., Yue Z., Zhou H. Exogenous caffeic acid and epicatechin enhance resistance against Botrytis cinerea through activation of the phenylpropanoid pathway in apples. Sci. Hortic. 2020. 268: 109348. https://doi.org/10.1016/j.scienta.2020.109348

15. Lee J., Chan B.L.S., Mitchell A.E. Identification/quantification of free and bound phenolic acids in peel and pulp of apples (Malus domestica) using high resolution mass spectrometry (HRMS). Food Chem. 2017. 215: 301. https://doi.org/10.1016/j.foodchem.2016.07.166

16. Casagrande M., Zanela J., Pereira D., de Lima V.A., Oldoni T.L.C., Carpes S.T. Optimization of the extraction of antioxidant phenolic compounds from grape pomace using response surface methodology. J. Food Meas. Charact. 2019. 13: 1120. https://doi.org/10.1007/s11694-018-00027-x

17. Tournour H.H., Segundo M.A., Magalhaes L.M., Barreiros L., Queiroz J., Cunha L.M. Valorization of grape pomace: Extraction of bioactive phenolics with antioxidant properties. Ind. Crops Prod. 2015. 74: 397. https://doi.org/10.1016/j.indcrop.2015.05.055

18. Otero-Pareja M.J., Casas L., Fernández-Ponce M.T., Mantell C., Martinez de la Ossa E.J. Green extraction of antioxidants from different varieties of red grape pomace. Molecules. 2015. 20(6): 9686. https://doi.org/10.3390/molecules20069686 

19. Fracassetti D., Lawrence N., Tredoux A.G.J., Tirelli A., Nieuwoudt H.H., Du Toit W.J. Quantification of glutathione, catechin and caffeic acid in grape juice and wine by a novel ultra-performance liquid chromatography method. Food Chem. 2011. 128(4): 1136. https://doi.org/10.1016/j.foodchem.2011.04.001

20. Vorobyova V., Skiba M., Vasyliev G. Extraction of phenolic compounds from tomato pomace using choline chloride-based deep eutectic solvents. J. Food Meas. Charact. 2022. 16(2): 1087. https://doi.org/10.1007/s11694-021-01238-5

21. Farinon B., Felli M., Sulli M., Diretto G., Savatin D.V., Mazzucat A., Costantini L. Tomato pomace food waste from different variants as a high antioxidant potential resource. Food Chem. 2024. 452: 139509. https://doi.org/10.1016/j.foodchem.2024.139509

22. Hu M., Zhu G., Chen Y., Xie G., Zhu M., Lv T., Xu L. Enhanced co-pyrolysis of corn stalk and bio-tar into phenolic-rich biooil: Kinetic analysis and product distributions. J. Anal. Appl. Pyrolysis. 2024. 177: 106358. https://doi.org/10.1016/j.jaap.2024.106358

23. Pereira P.H., Maya D.M., Oliveira D.C., Ferreira A.F. From waste to resource: maximizing olive pomace valorization through advanced thermal treatment. Biomass Convers. Biorefin. 2024. 1-17. https://doi.org/10.1007/s13399-024-05456-x

24. Velvizhi G., Jacqueline P.J., Shetti N.P., Latha K., Mohanakrishna G., Aminabhavi T.M. Emerging trends and advances in valorization of lignocellulosic biomass to biofuels. J. Environ. Manag. 2023. 345: 118527. https://doi.org/10.1016/j.jenvman.2023.118527

25. Nastasiienko N., Kulik T., Palianytsia B., Larsson M., Kartel M. Microwave-assisted catalytic pyrolysis of ferulic acid, as a lignin model compound. J. Therm. Anal. Calorim. 2023. 148(12): 5485. https://doi.org/10.1007/s10973-023-12087-3

26. Sankaranarayanan S., Won W. Catalytic pyrolysis of biomass to produce bio‐oil using layered double hydroxides (LDH)‐derived materials. GCB Bioenergy. 2024. 16(3): e13124. https://doi.org/10.1111/gcbb.13124

27. Sarkar R., Laskar N., Saha A., Basak B.B. Green biorefinery for residual biomass from agriculture. In: Plant Biomass Applications. (Academic Press, 2024). https://doi.org/10.1016/B978-0-443-15465-2.00005-7

28. Fu W., Bai X., Tursun Y., Liu Q., Li B., Dai Z., Zhao Y., Li X., Guo L., Li J. Oxidative pyrolysis of plywood waste: Effect of oxygen concentration and other parameters on product yield and composition. J. Anal. Appl. Pyrolysis. 2023. 173: 106068. https://doi.org/10.1016/j.jaap.2023.106068

29. Chaabane A., Abderafi S., Abbassi M.A. Valorizing argan residues into biofuels and chemicals through slow pyrolysis. Results Eng. 2024. 21: 101659. https://doi.org/10.1016/j.rineng.2023.101659

30. Du J., Shen T., Hu J., Zhang F., Yang S., Liu H., Wang H. Study on thermochemical conversion of triglyceride biomass catalyzed by biochar catalyst. Energy. 2023. 277: 127733. https://doi.org/10.1016/j.energy.2023.127733

31. Tran M.H., Paramasivam P., Le H.C., Nguyen D.T. Biomass: A Versatile Resource for Biofuel, Industrial, and Environmental Solution. International Journal on Advanced Science, Engineering and Information Technology. 2024. 14(1): 17489. https://doi.org/10.18517/ijaseit.14.1.17489

32. Quintero-Naucil M., Salcedo-Mendoza J., Solarte-Toro J.C., Aristizábal-Marulanda V. Assessment and comparison of thermochemical pathways for the rice residues valorization: pyrolysis and gasification. Environ. Sci. Pollut. Res. 2024. 1. https://doi.org/10.1007/s11356-024-32241-0

33. Wang B., Chen Y., Chen W., Hu J., Chang C., Pang S., Li P. Enhancement of aromatics and syngas production by co-pyrolysis of biomass and plastic waste using biochar-based catalysts in microwave field. Energy. 2024. 293: 130711. https://doi.org/10.1016/j.energy.2024.130711

34. Len T., Bressi V., Balu A.M., Kulik T., Korchuganova O., Palianytsia B., Esprob C., Luque R. Thermokinetics of production of biochar from crop residues: an overview. Green Chem. 2022. 24(20): 7801. https://doi.org/10.1039/D2GC02631G

35. Yefremova S., Zharmenov A., Sukharnikov Y., Bunchuk L., Kablanbekov A., Anarbekov K., Kulik T., Nikolaichuk A., Palianytsia B. Rice husk hydrolytic lignin transformation in carbonization process. Molecules. 2019. 24(17): 3075.https://doi.org/10.3390/molecules24173075

36. Shafizadeh A., Rastegari H., Shahbeik H., Mobli H., Pan J., Peng W., Li G., Tabatabaei M., Aghbashlo M. A critical review of the use of nanomaterials in the biomass pyrolysis process. J. Cleaner Prod. 2023. 400: 136705. https://doi.org/10.1016/j.jclepro.2023.136705

37. Hu M., Zhu G., Chen Y., Xie G., Zhu M., Lv,T., Xu L. Enhanced co-pyrolysis of corn stalk and bio-tar into phenolic-rich biooil: Kinetic analysis and product distributions. J. Anal. Appl. Pyrolysis. 2024. 177: 106358. https://doi.org/10.1016/j.jaap.2024.106358

38. Liu W., Liu B., Zhang Y., Yi B., Hu H., Fan Q., Liu H. Evolution of Pyrolysis Characteristics and Gas Components of Biochar Prepared by Either Mixing or Layering Rice Husk with Inert Aluminum Oxide. BioResources. 2023. 18(1). 10. https://doi.org/10.15376/biores.18.1.1699-1713

39. Pryhunova O., Dyachenko A., Ischenko O., Diuyk V., Goncharuk O., Oranska O., Bonarowska M. NiFe (CoFe)/silica and NiFe (CoFe)/alumina nanocomposites for the catalytic hydrogenation of CO2. Appl. Nanosci. 2023. 13(10): 6829. https://doi.org/10.1007/s13204-023-02781-x

40. Qasemi Z., Jafari D., Jafari K., Esmaeili H. Heterogeneous aluminum oxide/calcium oxide catalyzed transesterification of Mespilus germanica triglyceride for biodiesel production. Environ. Prog. Sustainable Energy. 2022. 41(2): e13738. https://doi.org/10.1002/ep.13738

41. Sharanda L.F., Shimansky A.P., Kulik T.V., Chuiko A.A. Study of acid-base surface properties of pyrogenic γ-aluminium oxide. Colloids Surfaces A. 1995. 105(2-3): 167. https://doi.org/10.1016/0927-7757(95)03265-7

42. Kulik T., Palianytsia B., Larsson M. Catalytic pyrolysis of aliphatic carboxylic acids into symmetric ketones over ceria-based catalysts: kinetics, isotope effect and mechanism. Catalysts. 2020. 10(2): 179. https://doi.org/10.3390/catal10020179

43. Chai J.D., Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008. 10: 6615. https://doi.org/10.1039/b810189b

44. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J.Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2010.

45. Podolyan Y., Leszczynski J. MaSK: A visualization tool for teaching and research in computational chemistry. Int. J. Quantum Chem. 2009. 109: 8. https://doi.org/10.1002/qua.21662

46. Kulik T., Nastasiienko N., Palianytsia B., Ilchenko M., Larsso M. Catalytic Pyrolysis of Lignin Model Compound (Ferulic Acid) over Alumina: Surface Complexes, Kinetics, and Mechanisms. Catalysts. 2021. 11: 1508. https://doi.org/10.3390/catal11121508

47. 'Swisłocka R. Spectroscopic (FT-IR, FT-Raman, UV absorption,1H and 13 C NMR) and theoretical (in B3LYP/6-311++G** level) studies on alkali metal salts of caffeic acid. Spectrochim. Acta, Part A. 2013. 100: 21. https://doi.org/10.1016/j.saa.2012.01.048

48. Kulyk K, Palianytsia B., Alexander J.D., Azizova L., Borysenko M., Kartel M., Larsson M., Kulik T. Kinetics of valeric acid ketonization and ketenization in catalytic pyrolysis on nanosized SiO2, γ-Al2O3, CeO2/SiO2, Al2O3/SiO2 and TiO2/SiO2. Chem. Phys. Chem. 2017. 18: 1943. https://doi.org/10.1002/cphc.201601370

49. Palacios E.G., Juares-Lopes G., Monhemius A.J. Infrared spectroscopy of metal carboxylates: II. Analysis of Fe(III), Ni and Zn carboxylate solutions. Hydrometallurgy. 2004. 72: 139. https://doi.org/10.1016/S0304-386X(03)00137-3

50. Azizova L.R., Kulik T.V., Palianytsia B.B., Ilchenko M.M., Telbiz G.M., Balu A.M., Tarnavskiy S., Luque R., Roldan A., Kartel M.T. The Role of Surface Complexes in Ketene Formation from Fatty Acids via Pyrolysis over Silica: from Platform Molecules to Waste Biomass. J. Am. Chem. Soc. 2023. 145(49): 26592. https://doi.org/10.1021/jacs.3c06966

51. Bellamy L. Infra-Red Spectra of Complex Molecule. (London: Methuen & Co LTD, 1963).

52. Nakanishi K. Infrared Adsorption Spectroscopy (Practical). (San Francisco: Holden Day. Inc. 1962).

53. Nastasiienko N., Palianytsia B., Kartel M., Larsson M., Kulik T. Thermal transformation of caffeic acid on the nanoceria surface studied by temperature programmed desorption mass-spectrometry, thermogravimetric analysis and ft-ir spectroscopy. Colloids Interfaces. 2019. 3(1): 34. https://doi.org/10.3390/colloids3010034

54. Nastasiienko N., Kulik T., Palianytsia B., Laskin J., Cherniavska T., Kartel M., Larsson M. Catalytic pyrolysis of lignin model compounds (Pyrocatechol, guaiacol, vanillic and ferulic acids) over nanoceria catalyst for biomass conversion. Appl. Sci. 2021. 11(16): 7205. https://doi.org/10.3390/app11167205

55. González-Baró A.C., Parajón-Costa B.S., Franca C.A., Pis-Diez R. Theoretical and spectroscopic study of vanillic acid. J. Mol. Struct. 2008. 889(1-3): 204. https://doi.org/10.1016/j.molstruc.2008.01.049

56. Kalinowska M., Piekut J., Bruss A., Follet C., Sienkiewicz-Gromiuk J., Świsłocka R., Rzączyńska Z., Lewandowski W. Spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV/VIS), Thermogravimetric and Antimicrobial Studies of Ca (II), Mn (II), Cu (II), Zn (II) and Cd (II) Complexes of Ferulic Acid. Spectrochim. Acta, Part A. 2014. 122: 631. https://doi.org/10.1016/j.saa.2013.11.089

57. Sebastian S., Sundaraganesan N., Manoharan S. Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of ferulic acid by density functional study. Spectrochim. Acta, Part A. 2009. 74(2): 312. https://doi.org/10.1016/j.saa.2009.06.011

58. Huang W., Jiang P., Wei C., Zhuang D., Shi J. Low-temperature one-step synthesis of covalently chelated ZnO/dopamine hybrid nanoparticles and their optical properties. J. Mater. Res. 2008. 23: 1946. https://doi.org/10.1557/JMR.2008.0243

59. Hachani R., Lowdell M., Birchall M., Hervault A., Mertz D., Begin-Colin S., Thanh N.T.K. Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale. 2016. 8: 3278. https://doi.org/10.1039/C5NR03867G

60. Togashi T., Naka T., Asahina S., Sato K., Takami S., Adschiri T. Surfactant-assisted one-pot synthesis of superparamagnetic magnetite nanoparticle clusters with tunable cluster size and magnetic field sensitivity. Dalton Trans. 2011. 40: 1073. https://doi.org/10.1039/C0DT01280G

61. Nastasiienko N., Kulik T., Palianytsia B., Larsson M., Cherniavska T., Kartel M. Decarboxylation of p-Coumaric Acid during Pyrolysis on the Nanoceria Surface. Colloids Interfaces. 2021. 5(4): 48. https://doi.org/10.3390/colloids5040048

62. Kulik T.V., Barvinchenko V.N., Palyanytsya B.B., Lipkovska N.A., Dudik O.O. Thermal transformations of biologically active derivatives of cinnamic acid by TPD MS investigation. J. Anal. Appl. Pyrolysis. 2011. 90(2): 219. https://doi.org/10.1016/j.jaap.2010.12.012

63. Ota A., Abramovič H., Abram V., Ulrih N.P. Interactions of p-coumaric, caffeic and ferulic acids and their styrenes with model lipid membranes. Food Chemistry. 2011. 125(4): 1256. https://doi.org/10.1016/j.foodchem.2010.10.054

64. Dei A., Gatteschi D., Sangregorio C., Sorace L. Quinonoid metal complexes: Toward molecular switches. Acc. Chem. Res. 2004. 37(11): 827. https://doi.org/10.1021/ar0200706

65. Singh V., Naka T., Takami S., Sahraneshin A., Togashi T., Aoki N., Adschiri T. Hydrothermal synthesis of inorganic-organichybrid gadolinium hydroxide nanoclusters with controlled size and morphology. Dalton Trans. 2013. 42: 16176. https://doi.org/10.1039/c3dt51692j




DOI: https://doi.org/10.15407/hftp15.03.429

Copyright (©) 2024 N. S. Nastasiienko, T. V. Kulik, M. M. Ilchenko, B. B. Palianytsia, A. I. Nastasiienko, G. Shaw, P. R. Davies, D. Wass, M. T. Kartel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.