The role of zeolite in imparting bacteriostatic properties to paper
DOI: https://doi.org/10.15407/hftp15.04.467
Abstract
The introduction of zeolite fillers containing silver, copper, zinc, etc. into paper gives it bacteriostatic properties. The purpose of this work was to clarify the role of zeolite and to elucidate the possibility of imparting antimicrobial properties to packaging paper more simply by introducing into the paper pulp not ready-made zeolite fillers, but mixtures of zeolite and a salt of the corresponding metal. The experiments used heulandite-bearing tuff from the Dzegwi-Tedzami deposit (Eastern Georgia) and its amorphized form, as well as salts - silver nitrate, copper chloride dihydrate and zinc chloride; the paper was made in laboratory. It has been found that the introduction of silver nitrate into paper pulp leads to the reduction of silver ions and the formation of Ag0 nanoparticles with average size of 38 nm, which is facilitated by the introduction of crystalline zeolite. Copper chloride dihydrate introduced into paper pulp forms both large (> 200 nm) crystallites and nanoparticles (< 20 nm), zinc chloride forms nanoparticles. Bacteriostatic properties of paper samples were tested by the disk diffusion method using the cultures of Gram-negative bacteria Escherichia coli and Salmonella enteritidis, Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis, fungal pathogenic yeast Candida albicans and a fungus Aspergilus niger. Silver-containing paper without zeolite fillers has the lowest activity, and with the introduction of fillers, zinc-containing paper demonstrates the highest activity against all microorganisms. Crystalline zeolite filler enhances the effect of silver against Salmonella and Bacillus subtilis, while amorphous filler enhances the effect of zinc against Gram-positive bacteria and fungi; both zeolite fillers weaken the action of copper.
Keywords
References
1. Nikolov A., Dobreva L., Danova S., Miteva-Staleva J., Krumova E., Rashev V., Vilhelmova-Ilieva N. Natural and modified zeolite clinoptilolite with antimicrobial properties: a review. Acta Microbiol. Bulg. 2023. 39(2): 147. https://doi.org/10.59393/amb23390207
2. Villa C.C., Valencia G.A., Córdoba A.L., Ortega-Toro R., Ahmed Sh., Gutiérrez T.J. Zeolites for food applications: A review. Food Biosci. 2022. 46: 101577. https://doi.org/10.1016/j.fbio.2022.101577
3. Wakweya B., Jifar W.W. In vitro evaluation of antibacterial activity of synthetic zeolite supported AgZnO nanoparticle against a selected group of bacteria. J. Exp. Pharmacol. 2023. 15: 139. https://doi.org/10.2147/JEP.S396118
4. Azizi-Lalabadi M., Alizadeh-Sani M., Khezerlou A., Mirzanajafi-Zanjani M., Zolfaghari H., Bagheri V., Divband B., Ehsani A. Nanoparticles and zeolites: Antibacterial effects and their mechanism against pathogens. Curr. Pharm. Biotechnol. 2019. 20(13): 1074. https://doi.org/10.2174/1573397115666190708120040
5. Król M., Syguła-Cholewińska J., Sawoszczuk T. Zeolite-supported aggregate as potential antimicrobial agents in gypsum composites. Materials. 2022. 15(9): 3305. https://doi.org/10.3390/ma15093305
6. Díez-Pascual A.M. Antibacterial activity of nanomaterials. Nanomaterials. 2018. 8(6): 359. https://doi.org/10.3390/nano8060359
7. Vergara-Figueroa J., Alejandro-Martín S., Pesenti H., Cerda F., Fernández-Pérez A., Gacitúa W. Obtaining nanoparticles of Chilean natural zeolite and its ion exchange with copper salt (Cu2+) for antibacterial applications. Materials. 2019. 12(13): 2202. https://doi.org/10.3390/ma12132202
8. Tekin R., Bac N. Antimicrobial behavior of ion-exchanged zeolite X containing fragrance. Microporous Mesoporous Mater. 2016. 234: 55. https://doi.org/10.1016/j.micromeso.2016.07.006
9. Yao G., Lei J., Zhang W., Yu C., Sun Z., Zheng S., Komarneni S. Antimicrobial activity of X zeolite exchanged with Cu2+ and Zn2+ on Escherichia coli and Staphylococcus aureus. Environ. Sci. Pollut. Res. Int. 2019. 26(3): 2782. https://doi.org/10.1007/s11356-018-3750-z
10. Milenkovic J., Hrenovic J., Matijasevic D., Niksic D., Rajic N. Bactericidal activity of Cu-, Zn-, and Ag-containing zeolites toward Escherichia coli isolates. Environ. Sci. Pollut. Res. 2017. 24(6): 20273. https://doi.org/10.1007/s11356-017-9643-8
11. Top A., Ülkü S. Silver, zinc, and copper exchange in Na-clinoptilolite and resulting effect on antibacterial activity. App. Clay Sci. 2004. 27(1-2): 13. https://doi.org/10.1016/j.clay.2003.12.002
12. Dolic M.B., Rajakovic-Ognjanovic V.N., Strbac S.B., Dimitrijevic S.I., Mitric M.N., Onjia A.E., Rajakovic L.V. Natural sorbents modified by divalent Cu2+- and Zn2+-ions and their corresponding antimicrobial activity. New Biotechnol. 2017. 39: 150. https://doi.org/10.1016/j.nbt.2017.03.001
13. Tsitsishvili V., Dolaberidze N., Mirdzveli N., Nijaradze M., Amiridze Z. Preparation of bactericidal fillers from Georgian heulandite-clinoptilolite and their application for paper production. Scientific collection "InterConf+". 2021. 67: 340. https://doi.org/10.51582/interconf.19-20.07.2021.037
14. Tsitsishvili V.G., Dolaberidze N.M., Nijaradze M.O, Mirdzveli N.A., Amiridze Z.S., Khutsishvili B.T. Acid and thermal treatment of natural heulandite. Him. Fiz. Tehnol. Poverhni. 2023. 14(4): 519. https://doi.org/10.15407/hftp14.04.519
15. Narayanan S., Batchelor W., Webley P. A review on the use of zeolites to create valuable paper products and paper-like adsorbent materials. Appita J. 2013. 66: 235.
16. Segal L, Creely J.J., Martin A.E. Jr., Conrad C.M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 1962. 29: 786. https://doi.org/10.1177/004051755902901003
17. Aziz B.S., Abdulwahid R.T., Rasheed M.A., Abdullah O.Gh., Ahmed H.M. Polymer blending as a novel approach for tuning the SPR peaks of silver nanoparticles. Polymers. 2017. 9(10): 486. https://doi.org/10.3390/polym9100486
18. Raghavendra V. Mycosynthesis of silver nanoparticles using extract of endophytic fungi, Penicillium species of Glycosmis mauritiana, and its antioxidant, antimicrobial, anti-inflammatory and tyrokinase inhibitory activity. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2016. 7(3): 035014. https://doi.org/10.1088/2043-6262/7/3/035014
19. Saleh N.M., Attia M.S. Conquer fluoroquinolone multi-drug resistant Salmonella enterica: Based on biological synthesis of silver nanoparticles using Citrus sinesis peel extract as an alternative therapeutic pathway. Int. J. Curr. Microbiol. Appl. Sci. 2016. 5(12): 398. https://doi.org/10.20546/ijcmas.2016.512.044
20. Gankhuyag S., Bae D.S., Lee K., Lee S. One-pot synthesis of SiO2@Ag mesoporous nanoparticle coating for inhibition of Escherichia coli bacteria on various surfaces. Nanomaterials. 2021. 11: 549. https://doi.org/10.3390/nano11020549
21. AbouElleef E.M., Mahrouka M.M., Salem S.E. A physical-chemical study of the interference of ceftriaxone antibiotic with copper chloride salt. Bioinorg. Chem. Appl. 2021. 2021: 4018843. https://doi.org/10.1155/2021/4018843
22. Mott D., Galkowski J., Wang L., Luo J., Zhong C.-J. Synthesis of size-controlled and shaped copper nanoparticles. Langmuir. 2007. 23(10): 5740. https://doi.org/10.1021/la0635092
23. Trivedi M.K., Sethi K.K., Panda P., Jana S. A comprehensive physicochemical, thermal, and spectroscopic characterization of zinc (II) chloride using X-ray diffraction, particle size distribution, differential scanning calorimetry, thermogravimetric analysis/ differential thermogravimetric analysis, ultraviolet-visible, and Fourier transform-infrared spectroscopy. Int. J. Pharma. Investig. 2017. 7(1): 33. https://doi.org/10.4103/jphi.JPHI_2_17
24. Hennings E., Schmidt H., Voigt W. Crystal structures of ZnCl2·2.5H2O, ZnCl2·3H2O and ZnCl2·4.5H2O. Acta Crystallogr Sect E Struct Rep Online. 2014. 70(12): 515. https://doi.org/10.1107/S1600536814024738
DOI: https://doi.org/10.15407/hftp15.04.467
Copyright (©) 2024


This work is licensed under a Creative Commons Attribution 4.0 International License.