Synthesis and application of polyacrylamide hydrogels with incorporated acid-activated Laponite® for diagnosis of oncological diseases
Abstract
Hydrogels with incorporated acid-activated Laponite® (LapA) platelets represent a new generation of biomaterials with promising biomedical application (e.g., diagnostics and therapy). The LapA nanomaterial have high specific surface area and demonstrate rather attractive hydrophilic properties. The physical cross-linking of hydrogels using the LapA allowed a significant improvement the systems homogeneity, transparency, and drug transport in these systems. In general incorporation of LapA may also affect the equilibrium degree of swelling at phase-transition from the swollen to the shrunken phase. In this work the effectiveness of using of polyacrylamide hydrogels (PAAG) with incorporated LapA for diagnosis of oncological diseases was studied. The synthesis procedure was performed using ultrasonication of aqueous dispersion of mixtures of monomer, crosslinking agent and initiators. The PAAG+LapA samples were characterized using SEM and PAAG swelling techniques. SEM images evidenced the presence of integration of LapA platelets into the hydrogel structure and formation of the shells of aggregated LapA particles. It can be explained by the formation of more active forms of LapA with stronger internal bonds. Effects of Lap, LapA concentration on the swelling kinetics and the maximal swelling degree were also evaluated. The the maximal equilibrium degree of swelling Qmax was reached within the first 5 hours. The concentration of platelets affected the value of Qmax, initially it decreased up to the minimum Qmax » 7.6 g/g at CLap » 0.04 % and then increased at higher concentrations. For these samples the protein separation spectrum of peripheral blood plasma was studied using the sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) technique. Peripheral blood plasma samples obtained from the donors, and colorectal cancer patients without distant metastases and with distant metastases were studied. The better separation of human plasma proteins was observed in hydrogels with incorporated LapA platelets. In future studies it is desirable to test these new SDS-PAGE materials for diagnostics of different forms of cancer diseases.
Keywords
References
Samoylenko O., Korotych O., Manilo M., Samchenko Y., Shlyakhovenko V., Lebovka N. Chapter 15. Biomedical Applications of Laponite-based Nanomaterials and Formulations. In: Soft Matter Systems for Biomedical Applications. (Springer Proceedings in Physics, 2022). P. 385.
Lebovka N.I., Samchenko Y.M., Kernosenko L.O., Poltoratska T.P., Pasmurtseva N.O., Mamyshev I.E., Gigiberiya V.A. Temperature sensitive hydrogels cross-linked by magnetic LAPONITE® RD®: effects of particle magnetization. Mater. Adv. 2020. 1(8): 2994.
Gantenbein D., Schoelkopf J., Matthews G.P., Gane P.A.C. Determining the size distribution-defined aspect ratio of platy particles. Appl. Clay Sci. 2011. 53(4): 544.
Balnois E., Durand-Vidal S., Levitz P. Probing the morphology of laponite clay colloids by atomic force microscopy. Langmuir. 2003. 19(17): 6633.
Neumann B.S. Behaviour of a synthetic clay in pigment dispersions. Rheol. Acta. 1965. 4(4): 250.
Shafran K., Jeans C., Kemp S.J., Murphy K. Dr Barbara S. Neumann: Clay scientist and industrial pioneer; creator of Laponite®. Clay Miner. 2020. 55(3): 1.
Tzitzios V., Basina G., Bakandritsos A., Hadjipanayis C.G., Mao H., Niarchos D., Hadjipanayis G.C., Tucek J., Zboril R. Immobilization of magnetic iron oxide nanoparticles on Laponite discs – an easy way to biocompatible ferrofluids and ferrogels. J. Mater. Chem. 2010. 20(26): 5418.
Pujala R.K. Dispersion stability, microstructure and phase transition of anisotropic nanodiscs. (Switzerland: Springer International Publishing, 2014).
Becher T.B., Braga C.B., Bertuzzi D.L., Ramos M.D., Hassan A., Crespilho F.N., Ornelas C. The structure--property relation Laponite® materials: from Wigner glasses to strong self-healing hydrogels formed by non-covalent interactions. Soft Matter. 2019. 15(6): 1278.
Gholamipour-Shirazi A., Carvalho M.S., Huila M.F.G., Araki K., Dommersnes P., Fossum J.O. Transition from glass-to gel-like states in clay at a liquid interface. Sci. Rep. 2016. 6: 37239.
Morariu S., Teodorescu M. Laponite® – A versatile component in hybrid materials for biomedical applications. Memoirs of the Scientific Sections of the Romanian Academy. 2020. 43: 1.
Chimene D., Alge D.L., Gaharwar A.K. Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Adv. Mater. 2015. 27(45): 7261.
Tomás H., Alves C.S., Rodrigues J. Laponite®: A key nanoplatform for biomedical applications? Nanomedicine Nanotechnology, Biol. Med. 2018. 14(7): 2407.
Das S.S., Neelam, Hussain K., Singh S., Hussain A., Faruk A., Tebyetekerwa M. Laponite-based nanomaterials for biomedical applications: a review. Curr. Pharm. Des. 2019. 25(4): 424.
De Melo Barbosa R., Ferreira M.A., Meirelles L.M.A., Zorato N., Raffin F.N. Nanoclays in drug delivery systems. In: Clay Nanoparticles. Properties and Applications. Micro and Nano Technologies. (Elsevier, 2020). P. 185.
Ianchis R., Ninciuleanu C.M., Gifu I.C., Alexandrescu E., Nistor C.L., Nitu S., Petcu C. Hydrogel-clay nanocomposites as carriers for controlled release. Curr. Med. Chem. 2020. 27(6): 919.
Jayakumar A., Surendranath A., Mohanan P.V. 2D materials for next generation healthcare applications. Int. J. Pharm. 2018. 551(1–2): 309.
Mousa M., Evans N.D., Oreffo R.O.C., Dawson J.I. Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. Biomaterials. 2018. 159: 204.
Ogunsona E.O., Muthuraj R., Ojogbo E., Valerio O., Mekonnen T.H. Engineered nanomaterials for antimicrobial applications: a review. Appl. Mater. Today. 2020. 18: 100473.
Pramanik S., Sundar Das D. Future prospects and commercial viability of two-dimensional nanostructures for biomedical technology. Chapter 9. In: Two-Dimensional Nanostructures for Biomedical Technology. (Elsevier, 2020). P. 281.
Zhang J., Zhou C.H., Petit S., Zhang H. Hectorite: Synthesis, modification, assembly and applications. Appl. Clay Sci. 2019. 177: 114.
Cai Y., Liu B., Liao M., He L., Zhu C. Application of periareolar mammaplasty with the tissue folding technique in breast reshaping following polyacrylamide hydrogel removal. Breast Care. 2020. 15(2): 157.
Choi S.B., Kim J., Kim D., Park J., Lee Y., Park K., Kim E.S., Lee S.M., Kim S.-W. Augmentation Mammoplasty Using Polyacrylamide Hydrogel Injection Can Mimic Breast Cancer After 20 Years: A Case Report. J. Breast Dis. 2022. 10(2): 77.
Romero M., Macchione M.A., Mattea F., Strumia M. The role of polymers in analytical medical applications. A review. Microchem. J. 2020. 159: 105366.
Xiong C., Chen Y., Xu Y., Jiang W., Yin X., Chen D., Gong X., He T., An Y., Han Y. A review of complications of polyacrylamide hydrogel injection. Chinese J. Plast. Reconstr. Surg. 2023. 5(2): 86.
Green M.R., Sambrook J. Polyacrylamide gel electrophoresis. Cold Spring Harb. Protoc. 2020. 2020(12): 525.
Sennakesavan G., Mostakhdemin M., Dkhar L.K., Seyfoddin A., Fatihhi S.J. Acrylic acid/acrylamide based hydrogels and its properties-A review. Polym. Degrad. Stab. 2020. 180: 109308.
Sepantafar M., Maheronnaghsh R., Mohammadi H., Rajabi-Zeleti S., Annabi N., Aghdami N., Baharvand H. Stem cells and injectable hydrogels: synergistic therapeutics in myocardial repair. Biotechnol. Adv. 2016. 34(4): 362.
Magdeldin S. Gel electrophoresis: Principles and basics. (BoD--Books on Demand, 2012).
Wuethrich A., Quirino J.P. A decade of microchip electrophoresis for clinical diagnostics--a review of 2008–2017. Anal. Chim. Acta. 2019. 1045: 42.
Shlyakhovenko V., Samoylenko O. Photopolymerization with EDTA and Riboflavin for Proteins Analysis in Polyacrylamide Gel Electrophoresis. Protein J. 2022. 41(4): 438.
Tomascova A., Lehotsky J., Kalenska D., Baranovicova E., Kaplan P., Tatarkova Z. A comparison of albumin removal procedures for proteomic analysis of blood plasma. Gen. Physiol. Biophys. 2019. 38(4): 305.
Raykin J., Snider E., Bheri S., Mulvihill J., Ethier C.R. A modified gelatin zymography technique incorporating total protein normalization. Anal. Biochem. 2017. 521: 8.
Miller A.J., Roman B., Norstrom E. A method for easily customizable gradient gel electrophoresis. Anal. Biochem. 2016. 509: 12.
McCausland J.A., Levine A.D. Colorimetric evaluation of PAGE gradient gels. Anal. Biochem. 2020. 594: 113613.
Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970. 227(5259): 680.
Brunelle J.L., Green R. One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE). Methods Enzymol. 2014. 541: 151.
Anonymous. Laponite. Performance Additives. BYK. Technical Information B-RI 21. 2018.
Lebovka N., Goncharuk O., Klepko V., Mykhailyk V., Samchenko Y., Kernosenko L., Pasmurtseva N., Poltoratska T., Siryk O., Solovieva O., Tatochenko M. Cross-Linked Hydrogels Based on PolyNIPAAm and Acid-Activated Laponite RD: Swelling and Tunable Thermosensitivity. Langmuir. 2022. 38(18): 5708.
Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds, part B: applications in coordination, organometallic, and bioinorganic chemistry. (John Wiley & Sons, 2009).
Badertscher M., Buhlmann P., Pretsch E. Structure determination of organic compounds. Tables of Spectral Data. (Springer, 2009).
Komadel P. Acid activated clays: Materials in continuous demand. Appl. Clay Sci. 2016. 131: 84.
Komadel P., Madejova J. Chapter 7.1 Acid Activation of Clay Minerals. Developments in Clay Science. 2006. 1: 263.
Tkáč I., Komadel P., Müller D. Acid-treated montmorillonites – A study by 29Si and 27Al MAS NMR. Clay Miner. 1994. 29(1): 11.
Breen C., Madejová J., Komadel P. Characterisation of moderately acid-treated, size-fractionated montmorillonites using IR and MAS NMR spectroscopy and thermal analysis. J. Mater. Chem. 1995. 5(3): 469.
Bickmore B.R., Bosbach D., Hochella Jr M.F., Charlet L., Rufe E. In situ atomic force microscopy study of hectorite and nontronite dissolution: Implications for phyllosilicate edge surface structures and dissolution mechanisms. Am. Mineral. 2001. 86(4): 411.
Van Rompaey K., Van Ranst E., De Coninck F., Vindevogel N. Dissolution characteristics of hectorite in inorganic acids. Appl. Clay Sci. 2002. 21(5): 241.
Franco F., Pozo M., Cecilia J.A., Benitez-Guerrero M., Lorente M. Effectiveness of microwave assisted acid treatment on dioctahedral and trioctahedral smectites. The influence of octahedral composition. Appl. Clay Sci. 2016. 120: 70.
Mishra A.K., Kuila T., Kim N.H., Lee J.H. Effect of peptizer on the properties of Nafion--Laponite clay nanocomposite membranes for polymer electrolyte membrane fuel cells. J. Membr. Sci. 2012. 389: 316.
Mishra A.K., Chattopadhyay S., Nando G.B. Effect of modifiers on morphology and thermal properties of novel thermoplastic polyurethane-peptized laponite nanocomposite. J. Appl. Polym. Sci. 2010. 115(1): 558.
Mishra A.K., Rajamohanan P.R., Nando G.B., Chattopadhyay S. Structure – property of thermoplastic polyurethane – clay nanocomposite based on covalent and dual-modified Laponite. Adv. Sci. Lett. 2011. 4(1): 65.
Wheeler P.A., Wang J., Baker J., Mathias L.J. Synthesis and characterization of covalently functionalized laponite clay. Chem. Mater. 2005. 17(11): 3012.
Li P., Kim N.H., Hui D., Rhee K.Y., Lee J.H. Improved mechanical and swelling behavior of the composite hydrogels prepared by ionic monomer and acid-activated Laponite. Appl. Clay Sci. 2009. 46(4): 414.
Cameron J.M., Bruno C., Parachalil D.R., Baker M.J., Bonnier F., Butler H.J., Byrne H.J. Vibrational spectroscopic analysis and quantification of proteins in human blood plasma and serum. In: Vibrational Spectroscopy in Protein Research. (Elsevier, 2020). P. 269.
Copyright (©) 2024 Yu. M. Samchenko, O. A. Samoylenko, A. V. Verbinenko, I. I. Ganusevich, L. O. Kernosenko, T. P. Poltoratska, N. O. Pasmurtseva, O. O. Solovieva, I. I. Volobayev
This work is licensed under a Creative Commons Attribution 4.0 International License.