Chemistry, Physics and Technology of Surface, 2024, 15 (4), 574-582.

Sponge-like hybrid hydrogels for endoprosthetics in oculo-orbital area



Y. M. Samchenko, A. P. Maletsky, L. O. Kernosenko, S. M. Dybkova, O. V. Artiomov, T. P. Poltoratska, L. S. Rieznichenko, N. O. Pasmurtceva, V. I. Podolska, T. G. Gruzina

Abstract


In recent years, significant progress has been made in both the synthesis of metal nanoparticles and the creation of hydrogel platforms. It is assumed that their synergistic combination will allow to create the advanced hydrogel nanocomposites for the repair of anatomical and functional disorders of the human body, as well as for the needs of reconstructive surgery. The aim of the study is to develop a porous polymeric material based on polyvinylformal with incorporated functional hydrogels and gold nanoparticles, the study of its physicochemical properties and biocompatibility in vitro and in vivo. The developed hybrid hydrogel material is intended for use in reconstructive surgery of the oculo-orbital area and for filling postoperative cavities with simultaneous prevention of recurrence. The morphology of the synthesized hybrid hydrogel composites with gold nanoparticles was investigated by means of electron microscopy (SEM), while their thermal stability was studied by TGA and DSC methods. It was proved that the synthesized hybrid hydrogel materials demonstrate thermal stability in a wide temperature range, which significantly exceeds the range of their application, and can withstand steam sterilization (121 °C) without significant changes. The synthesized hybrid hydrogels were characterized as biocompatible in vitro according to the parameters of cytotoxicity, genotoxicity and biochemical markers (ATPase and LDHase activity) using L929 cell line. The study of the soft tissue reaction to implantation in vivo demonstrated the formation of fibrous tissue on the periphery and inside the implant, and a marked decrease in macrophage-histiocyte reaction and inflammatory infiltration in favor of fibroblastic proliferation and the absence of resorption, which creates the prerequisites for a stable clinical result. Thus, the developed spongy hybrid hydrogel material can be used in reconstructive surgery of the maxillofacial and ophthalmic-orbital areas.


Keywords


pH-sensitive hydrogels; endoprosthesis; gold nanoparticles; polyviniformal; acrylic acid; hydrogel implants; biocompatibility

References


Jiang Y., Krishnan N., HeoJ., Fang R. H., Zhang L. Nanoparticle–hydrogel superstructures for biomedical applications. J. Controlled Release. 2020. 324: 505.

Aktürk Ö., K. Dilek Collagen/PEO/gold nanofibrous matrices for skin tissue engineering. Turk. J. Biol. 2016. 40(2): 1502.

Samadian H., Khastar H., Ehterami A., Saleh M. Bioengineered 3D nanocomposite based on gold nanoparticles and gelatin nanofibers for bone regeneration: in vitro and in vivo study. Sci. Rep. 2021. 11(1): 13877.

Hui-Li T., Sin-Yeang T., Pushpamalar J. Application of Metal Nanoparticle⁻Hydrogel Composites in Tissue Regeneration. Bioengineering. 2019. 6(1): 17.

Matteis V., Rizzello L. Noble Metals and Soft Bio-Inspired Nanoparticles in Retinal Diseases Treatment: A Perspective. Cells. 2020. 9(3): 679.

Lin D., Feng X., Mai B., Li X., Wang F., Liu J., Liu X., Zhang K., Wang X. Bacterial-based cancer therapy: An emerging toolbox for targeted drug/gene delivery. Biomaterials. 2021. 277: 121124.

Hobzova R., Kodetova M., Pochop P., Uhlik J., Dunovska K., Svojgr K., Hrabeta J., Feriancikova B., Cocarta A., Sirc J. Hydrogel implants for transscleral diffusion delivery of topotecan: In vivo proof of concept in a rabbit eye model. Int. J. Pharm. 2021. 606: 120832.

Kernosenko L., Samchenko K., Goncharuk O., Pasmurtseva N., Poltoratska T., Siryk O., Dziuba O., Mironov O., Szewczuk-Karpisz K. Polyacrylamide Hydrogel Enriched with Amber for In Vitro Plant Rooting. Plants. 2023. 12(5): 1196.

Cocarta A., Hobzova R., Trchova M., Svojgr K., Kodetova M., Pochop P., Sirc J. 2‐Hydroxyethyl Methacrylate Hydrogels for Local Drug Delivery: Study of Topotecan and Vincristine Sorption/Desorption Kinetics and Polymer‐Drug Interaction by ATR‐FTIR Spectroscopy. Macromol. Chem. Phys. 2021. 222(13): 2100086.

Seidi K., Ayoubi-Joshaghani M.H., Azizi M., Javaheri T., Jaymand M., Alizadeh E., Webster T.J., Yazdi A.A., Niazi M., Hamblin M.R., Amoozgar Z., Jahanban-Esfahlan R. Bioinspired hydrogels build a bridge from bench to bedside. Nano Today. 2021. 39: 101157.

Zhang Y., Xie F., Yin Y., Zhang Q., Jin H., Wu Y., Pang L., Li J., Gao J. Immunotherapy of Tumor RNA-Loaded Lipid Nanoparticles Against Hepatocellular Carcinoma. Int. J. Nanomedicine. 2021. 16: 1553.

Yadid M., Feiner R., Dvir T. Gold nanoparticle-integrated scaffolds for tissue engineering and regenerative medicine. Nano Lett. 19(4): 2198.

Urie R., Ghosh D., Ridha I., Rege K. Inorganic Nanomaterials for Soft Tissue Repair and Regeneration. 2018. Annu. Rev. Biomed. Eng. 20: 353.

Fathi M., Marques H.K., Silva C.E.R., Barthes J., Bat E., Engin N. Use of Nanoparticles in Tissue Engineering and Regenerative Medicine. Front. Bioeng. Biotechnol. 2019. 7: 113.

Nikolaenko V.P. A giant foreign body of the orbit an maxillary sinus. Ophthalmology Reports. 2013. 6(1): 78.

Samchenko Yu.M., Dybkova S.M., Maletskyy A.P., Kernosenko L.O., Gruzina T.G., Pasmurtseva N.O., Rieznichenko L.S., Poltoratska T.P., Liutko O.B., Vitrak K.V., Bigun N.M., Vorotytskyi P.V., Mamyshev I.Ie. Antimicrobial effects of hydrogel implants incorporating gold nanoparticles and albucide and developed for reconstructive surgery in the orbit and periorbital area. Can. J. Ophthalmol. Canadian. 2023. 5(514): 27.

Samchenko Yu., Korotych O., Kernosenko L., Kryklia S., Litsis O., Skoryk M., Poltoratska T., Pasmurtseva N. Stimuli-responsive hybrid porous polymers based on acetals of polyvinyl alcohol and acrylic hydrogels. Colloids Surf. A. 2018. 544: 91.

Samchenko Yu.M., Dybkova S.M., Reznichenko L.S., Kernosenko L.O., Gruzina T.G, Poltoratska T.P., Liutko O.B., Vitrak K.V., Podolska V.I., Vorotytskyi P.V. Synthesis and study of аntimicrobial properties of hydrogel materials for maxillo-facial surgery. Him. Fiz. Tehnol. Poverhni. 2024. 15(1): 110.

Guidelines “Safety assessment of medical nanopreparations” approved by the Scientific Expert Council of the State Expert Centre of the Ministry of Health of Ukraine (protocol N 8, 09.26.2013). Kyiv. 2013.

Sternik D., Szewczuk-Karpisz K., Siryk O., Samchenko Y., Derylo-Marczewska A., Kernosenko L., Pakhlov E., Goncharuk O. Structure and thermal properties of acrylic copolymer gels: effect of composition and cross-linking method. J. Therm. Anal. Calorim. 2024. 149: 9057.




Copyright (©) 2024 Y. M. Samchenko, A. P. Maletsky, L. O. Kernosenko, S. M. Dybkova, O. V. Artiomov, T. P. Poltoratska, L. S. Rieznichenko, N. O. Pasmurtceva, V. I. Podolska, T. G. Gruzina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.