Chemistry, Physics and Technology of Surface, 2025, 16 (1), 3-17.

Modeling of binary nanooxides with solid solutions and mixed phases



DOI: https://doi.org/10.15407/hftp16.01.003

V. M. Gun’ko

Abstract


The electronic structure of individual metal (Ti, Al) or metalloid (Si) oxides as well as complex (binary, ternary, etc.) oxides is of importance from a practical point of view. In various applications of these materials as catalysts, sorbents, carriers, fillers, etc., the bandgap, polarizability, conductivity, and dielectric characteristics play a crucial role in the application efficiency. Therefore, accurate determination of these characteristics is strongly required. Sometimes theoretical determination of the characteristics is simpler, especially for large series of complex materials with varied compositions, by using quantum chemical methods (i.e., computations without synthesis) than experimental ones (synthesis and measurements). Upon computations with quantum chemical methods, selection of a method adequate to a task is important to obtain more accurate information. Therefore, in this study, two semiempirical methods (PM7 and DFTB+ used in semiempirical packages (MOPAC, DFTB+) and implemented in the most known packages such as Gaussian, GAMESS, AMS, etc.) have been used in parallel to DFT (mainly ωB97X-D/cc-pVDZ) to compute various clusters (22, 35, 88, 94, and 111 units) with silica, alumina, titania, titania/silica, and alumina/silica. The computations show that the bandgap value (Eg) of titania is mostly accurately computed with DFTB+ using cluster and periodic boundary conditions approaches. However, for other systems, the DFTB+ Eg values are typically underestimated. The PM7 and DFT bandgap values are more appropriate with the use of the potential approach V–1 (computation of the virtual levels of the systems with removed one electron) giving Eg1. Detailed analysis of the integral density of electron states and density of atomic charges summarized by atom types reveals several reasons of nonmonotonic changes in the Eg values vs. composition of binary oxides. As a whole, the PM7 and DFT methods give correct tendencies in the changes in the Eg and Eg1 values vs. binary oxide compositions, but the Eg values are typically overestimated in contrast to underestimated values by DFTB+. Water adsorbed in a low amount on oxide clusters provides a significant stabilization of a surface since the Gibbs free surface energy strongly decreases especially for titania-containing systems. This explains more effective adsorption of water from air onto nonporous binary oxides or titania in comparison to silica.


Keywords


binary nanooxides; solid solution; mixed phases; electronic structure; DFT method; semiempirical quantum chemical methods

References


1. Somasundaran P. (editor). Encyclopedia of Surface and Colloid Science. Third Edition. (Boca Raton: CRC Press, 2015). https://doi.org/10.1081/E-ESCS3

2. Advani S.G. Processing and Properties of Nanocomposites. (Singapore: Word Scientific Publising, 2007). https://doi.org/10.1142/9789812772473

3. Birdi K.S. (editor). Handbook of Surface and Colloid Chemistry. Third edition. (Boca Raton: CRC Press, 2009). https://doi.org/10.1201/b10154

4. Al-Abadleh H.A., Grassian V.H. Oxide surfaces as environmental interfaces. Surf. Sci. Report. 2003. 52: 63. https://doi.org/10.1016/j.surfrep.2003.09.001

5. Guo Z., Liu B., Zhang Q., Deng W., Wang Y., Yang Y. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem. Soc. Rev. 2014. 43: 3480. https://doi.org/10.1039/c3cs60282f

6. Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013). https://doi.org/10.1201/b14202

7. Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk O.V., Pakhlov E.M., Skubiszewska-Zięba J., Blitz J.P. Interfacial phenomena at a surface of individual and complex fumed nanooxides. Adv. Colloid Interface Sci. 2016. 235: 108. https://doi.org/10.1016/j.cis.2016.06.003

8. Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk O.V., Pakhlov E.M., Matkovsky O.K. Interfacial phenomena at a surface of individual and complex fumed nanooxides. Surface. 2019. 11(26): 3. https://doi.org/10.15407/Surface.2019.11.003

9. Schleyer P.v.R. (editor). Encyclopedia of Computational Chemistry. (New York: John Wiley & Sons, 1998).

10. Dykstra C.E., Frenking G., Kim K.S., Scuseria G.E. (editors). Theory and Applications of Computational Chemistry, the First Forty Years. (Amsterdam: Elsevier, 2005).

11. Cramer C.J. Essentials of Computational Chemistry: Theories and Models. Second edn. (Chichester, UK: John Wiley & Sons, Ltd, 2008).

12. Helgaker T., Jorgensen P., Olsen J. Molecular Electronic Structure Theory. (New York: John Wiley & Sons, 2014).

13. Martin R.M., Reining L., Ceperley D.M. Interacting Electrons: Theory and Computational Approaches. (Cambridge, UK: Cambridge University Press, 2016). https://doi.org/10.1017/CBO9781139050807

14. Engel E., Dreizler R.M. Density Functional Theory: An Advanced Course. (Berlin: Springer, 2013).

15. Yang K., Zheng J., Zhao Y., Truhlar D.G. Tests of the RPBE, revPBE, τ-HCTHhyb, ωB97X-D, and MOHLYP density functional approximations and 29 others against representative databases for diverse bond energies and barrier heights in catalysis. J. Chem. Phys. 2010. 132(16): 164117. https://doi.org/10.1063/1.3382342

16. Becke A.D. Perspective: Fifty years of density-functional theory in chemical physics. J. Chem. Phys. 2014. 140(18): 18A301. https://doi.org/10.1063/1.4869598

17. Stewart J.J.P. MOPAC2022. Stewart Computational Chemistry. web: HTTP://OpenMOPAC.net. 2024. (accessed on 30.01.2024, Ver. 22.1.1).

18. Hourahine B., Aradi B., Blum V., Bonafé F., Buccheri A., Camacho C., Cevallos C., Deshaye M.Y., Dumitrică T., Dominguez A., Ehlert S., Elstner M., van der Heide T., Hermann J., Irle S., Kranz J.J., Köhler C., Kowalczyk T., Kubař T., Lee I.S., Lutsker V., Maurer R.J., Min S.K., Mitchell I., Negre C., Niehaus T.A., Niklasson A.M.N., Page A.J., Pecchia A., Penazzi G., Persson M.P., Řezáč J., Sánchez C.G., Sternberg M., Stöhr M., Stuckenberg F., Tkatchenko A., Yu V.W.-z., Frauenheim T. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys. 2020. 152(12):124101. https://doi.org/10.1063/1.5143190

19. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A. Jr., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. Gaussian 16, Revision C.02. (Gaussian, Inc., Wallingford CT, 2019).

20. Barca G.M.J., Bertoni C., Carrington L., Datta D., De Silva N., Deustua J.E., Fedorov D.G., Gour J.R., Gunina A.O., Guidez E., Harville T., Irle S., Ivanic J., Kowalski K., Leang S.S., Li H., Li W., Lutz J.J., Magoulas I., Mato J., Mironov V., Nakata H., Pham B.Q., Piecuch P., Poole D., Pruitt S.R., Rendell A.P., Roskop L.B., Ruedenberg K. Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys. 2020. 152(15): 154102. https://doi.org/10.1063/5.0005188

21. Rüger R., Franchini M., Trnka T., Yakovlev A., van Lenthe E., Philipsen P., van Vuren T., Klumpers B., Soini T. AMS 2023.1. SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.

22. Cañas J., Alba G., Leinen D., Lloret F., Gutierrez M., Eon D., Pernot J., Gheeraert E., Araujo D. Diamond/γ-alumina band offset determination by XPS. Appl. Surf. Sci. 2021. 535: 146301. https://doi.org/10.1016/j.apsusc.2020.146301

23. Alshoaibi A., Islam S. Mesoporous zinc oxide supported silica-titania nanocomposite: Structural, optical, and photocatalytic activity. J. Alloys Compd. 2021. 881: 160582. https://doi.org/10.1016/j.jallcom.2021.160582

24. Paul P., Hafiz Md. G., Schmitt P., Patzig C., Otto F., Fritz T., Tünnermann A., Szeghalmi A. Optical bandgap control in Al2O3/TiO2 heterostructures by plasma enhanced atomic layer deposition: Toward quantizing structures and tailored binary oxides. Spectrochim. Acta, Part A. 2021. 252: 119508. https://doi.org/10.1016/j.saa.2021.119508

25. Somekawa S., Watanabe H., Ono Y., Oaki Y., Imai H. Preparation of titania with double band structure derived from a quantum size effect: Drastic increase in the photocatalytic activity. Mater. Lett. 2021. 304: 130609. https://doi.org/10.1016/j.matlet.2021.130609

26. Linsebigler A.L., Lu G., Yates J.T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995. 95(3): 735. https://doi.org/10.1021/cr00035a013

27. Fujishima A., Hashimoto K., Watanabe T. TiO2 Photocatalysis Fundaments and Applications. (Tokyo: University of Tokyo, BKC, Inc., 1999).

28. Emori M., Sugita M., Ozawa K., Sakama H. Electronic structure of epitaxial anatase TiO2 films: Angle-resolved photoelectron spectroscopy study. Phys. Rev. B. 2012. 85: 035129. https://doi.org/10.1103/PhysRevB.85.035129

29. Umebayashi T., Yamaki T., Itoh H., Asai K. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J. Phys. Chem. Solid. 2002. 63(10): 1909. https://doi.org/10.1016/S0022-3697(02)00177-4

30. Wang Y., Doren D.J. Electronic structures of V-doped anatase TiO2. Solid State Commun. 2005. 136(3): 142. https://doi.org/10.1016/j.ssc.2005.07.014

31. Wu H.-C., Li S.-H., Lin S.-W. Effect of Fe concentration on Fe-doped anatase TiO2 from GGA + U calculations. Int. J. Photoenergy. 2012. 2012(3): 823498. https://doi.org/10.1155/2012/823498

32. Du Y., Wang Z., Chen H., Wang H.-Y., Liu G., Weng Y. Effect of trap states on photocatalytic properties of boron-doped anatase TiO2 microspheres studied by time-resolved infrared spectroscopy. Phys. Chem. Chem. Phys. 2019. 21(8): 4349. https://doi.org/10.1039/C8CP06109B

33. Wischert R., Laurent P., Coperet C., Delbecq F., Sautet P. γ-Alumina: the essential and unexpected role of water for the structure, stability, and reactivity of "defect" sites. J. Am. Chem. Soc. 2012. 134(35): 14430. https://doi.org/10.1021/ja3042383

34. Landmann M., Rauls E., Schmidt W. The electronic structure and optical response of rutile, anatase, and brookite TiO2. J. Phys.: Condens. Matter. 2012. 24: 3. https://doi.org/10.1088/0953-8984/24/19/195503

35. Reyes-Coronado D., Rodriguez-Gattorno G., Espinosa-Pesqueira M.E., Cab C., Coss R.D., Oskam G. Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology. 2008. 19(14): 145605. https://doi.org/10.1088/0957-4484/19/14/145605

36. Rasalingam S., Kibombo H.S., Wu C.-M., Peng R., Baltrusaitis J., Koodali R.T. Competitive role of structural properties of titania-silica mixed oxides and a mechanistic study of the photocatalytic degradation of phenol. Appl. Catal. B. 2014. 148-149: 394. https://doi.org/10.1016/j.apcatb.2013.11.025

37. Kibombo H.S., Rasalingam S., Koodali R.T. Facile template free method for textural property modulation that enhances adsorption and photocatalytic activity of aperiodic titania supported silica materials. Appl. Catal. B. 2013. 142-143: 119. https://doi.org/10.1016/j.apcatb.2013.05.020

38. Worrall D.R., Williams S.L., Eremenko A., Smirnova N., Yakimenko O., Starukh G. Laser flash photolysis study of electron transfer processes of adsorbed anthracene on titania-silica surfaces. Colloids Surf. A. 2004. 230(1-3): 45. https://doi.org/10.1016/j.colsurfa.2003.09.012

39. Ghaedi M. (editor). Photocatalysis: Fundamental Processes and Applications. Interface Science and Technology. V. 32. (Amsterdam: Elsevier, 2021).

40. Saleh T.A. (editor). Surface Science of Adsorbents and Nanoadsorbents. Interface Science and Technology. V. 34. (Amsterdam: Elsevier, 2022).

41. Suib S.L. New and Future Developments in Catalysis. Catalysis by Nanoparticles. (Elsevier, 2013).

42. Douhal A., Anpo M. Chemistry of Silica and Zeolite-Based Materials. Synthesis, Characterization and Applications. (Amsterdam: Elsevier, 2019).

43. Singh P., Bassin J.P., Rajkhowa S., Hussain C.M., Oraon R. (editors). Environmental Sustainability and Industries. Technologies for Solid Waste, Wastewater, and Air Treatment. (Amsterdam: Elsevier, 2022).

44. Fornasiero P., Cargnello M. (editors). Morphological, Compositional, and Shape Control of Materials for Catalysis. Studies in Surface Science and Catalysis. V. 177. (Amsterdam: Elsevier, 2017). https://doi.org/10.1016/B978-0-12-805090-3.10000-2

45. Abdulkadir B.A., Teh L.P., Abidin S.Z., Setiabudi H.D., Jusoh R. Advancements in silica-based nanostructured photocatalysts for efficient hydrogen generation from water splitting. Chem. Eng. Res. Des. 2023. 199: 541. https://doi.org/10.1016/j.cherd.2023.09.046

46. Rashid R., Shafiq I., Gilani M.R.H.S, Maaz M., Akhter P., Hussain M., Jeong K.-E., Kwon E.E., Bae S., Park Y.-K. Advancements in TiO2-based photocatalysis for environmental remediation: Strategies for enhancing visible-light-driven activity. Chemosphere. 2024. 349: 140703. https://doi.org/10.1016/j.chemosphere.2023.140703

47. Marenich A.V., Cramer C.J., Truhlar D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 2009. 113(18): 6378. https://doi.org/10.1021/jp810292n

48. Cui M., Reuter K., Margraf J.T. Obtaining robust density functional tight binding parameters for solids across the periodic table. ChemRxiv. 2024. doi:10.26434/chemrxiv-2024-d0cff. https://doi.org/10.26434/chemrxiv-2024-d0cff

49. Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., Ferrin T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021. 30(1): 70. https://doi.org/10.1002/pro.3943

50. Avogadro 2. https://two.avogadro.cc/. Ver. 1.99. 2024.

51. Pedretti A., Mazzolari A., Gervasoni S., Fumagalli L., Vistoli G. The VEGA suite of programs: a versatile platform for cheminformatics and drug design projects. Bioinformatics. 2021. 37(8): 1174. https://doi.org/10.1093/bioinformatics/btaa774

52. Jmol: an open-source Java viewer for chemical structures in 3D (Ver. 16.2.21), 2024. http://www.jmol.org/.

53. Gun'ko V.M. Modeling of interfacial behavior of water and organics. J. Theor. Comput. Chem. 2013. 12(07): 1350059. https://doi.org/10.1142/S0219633613500594

54. Gun'ko V.M. Interfacial phenomena: effects of confined space and structure of adsorbents on the behavior of polar and nonpolar adsorbates at low temperatures. Current Physical Chemistry. 2015. 5(2): 137. https://doi.org/10.2174/187794680502160111093413

55. Gun'ko V.M. Effects of methods and basis sets on calculation results using various solvation models. Him. Fiz. Tehnol. Poverhni. 2018. 9(1): 3. https://doi.org/10.15407/hftp09.01.003

56. Gun'ko V.M. Charge distribution functions for characterization of complex systems. Him. Fiz. Tehnol. Poverhni. 2021. 12(1): 3. https://doi.org/10.15407/hftp12.01.003

57. Gun'ko V.M. Electronic structure of anatase doped by metals calculated using translational boundary conditions and cluster approach. Him. Fiz. Tehnol. Poverhni. 2014. 5(2): 119. [in Russian].

58. Gun'ko V.M. Atomic charge distribution functions as a tool to analyze electronic structure of molecular and cluster systems. Int. J. Quantum Chem. 2021. 121(14): e26665. https://doi.org/10.1002/qua.26665

59. Gun'ko V.M., Zarko V.I., Goncharuk E.V., Andriyko L.S., Turov V.V., Nychiporuk Y.M., Leboda R., Skubiszewska-Zięba J., Gabchak A.L., Osovskii V.D., Ptushinskii Y.G., Yurchenko G.R., Mishchuk O.A., Gorbik P.P., Pissis P., Blitz J.P. TSDC spectroscopy of relaxational and interfacial phenomena. Adv. Colloid Interface Sci. 2007. 131(1-2): 1. https://doi.org/10.1016/j.cis.2006.11.001




DOI: https://doi.org/10.15407/hftp16.01.003

Copyright (©) 2025

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.