Chemistry, Physics and Technology of Surface, 2025, 16 (1), 18-27.

Study of the effect of zinc oxide on the antifungal action of the polymer blend (unsaturated polyester and natural rubber) for industrial applications



DOI: https://doi.org/10.15407/hftp16.01.018

R. A. Nassif, A. M. Haleem, R. H. Hilal, A. A. Nsaif

Abstract


Incorporating inorganic nanoparticles into polymers has produced polymer nanostructure materials with high-performance and multifunctional polymer features that exceed standard polymer composites. Polymer nanocomposites have multifunctional qualities, such as increased resistance to moisture and fungal and antibacterial properties. In this study, a polymeric blend of unsaturated polyester and natural rubber (80 / 20) was prepared as a control material, and it was then reinforced with zinc oxide nanoparticles (ZnONPs) with weight ratios (1, 1.5, 2, 2.5, and 3 %) in gradual addition with continuous stirring. The X-ray diffraction analyses and water diffusion coefficients were examined. The diffusion coefficient of the composite material with a concentration of 2 % had the highest value, after which the values began to fall, while the increase was linear at less than this concentration. The X-ray diagram revealed that the composite material with a concentration of 1 % had the lowest values of 2θ, and that as the concentration increased, the values increased. Antimicrobial activity was conducted for two types of soil microbes, Fusarium solani and Streptomyces lividans, using the disc diffusion method, and inhibition of biofilm formation was observed at 72 hours of incubation time, with inhibition rates reaching 40.61 and 69.39 % in both Streptomyces lividans and Fusarium solani, respectively. It can also be noted the clear effect of zinc nanoparticles on the formation and visualization of biofilms in both organisms, as it was significantly affected by the treatment with an increase in concentration. Based on these findings, it appears that the synthetic blends that are reinforced with ZnONPs could be a promising material for water containers.


Keywords


microbial growth; nanocomposites; polymer blend; water diffusion coefficient; X-ray diffraction

References


1. Rana M., Hanaa K., Rafah A. Preparation of polymeric composite for antiskid flooring purpose. Phys. Scr. 2023. 98(8): 085918. https://doi.org/10.1088/1402-4896/ace2f9

2. Mahmood R., Salman S. The electrical and mechanical properties of cadmium chloride reinforced PVA:PVP blend films. Papers in Physics. 2020. 12: 120006. https://doi.org/10.4279/pip.120006

3. Gun'ko V.M., Turov V.V. Colligative Properties of Various Liquid Blends vs. Temperature Under Confined Space Effects in Pores of Different Adsorbents. Him. Fiz. Tehnol. Poverhni. 2024. 15(1): 3. https://doi.org/10.15407/hftp15.01.003

4. Mohammad A., Sawsan S., Mahmoud A., Sabry R., Fawzy M., Eissa N., El-Shaer A. Using ZnO nanoparticles in fungal inhibition and self-protection of exposed marble columns in historic sites. Archaeol. Anthropol. Sci. 2019. 11: 3407. https://doi.org/10.1007/s12520-018-0762-z

5. Su-E. L., Hyo-E. P. Antimicrobial Activity of Zinc Oxide Nano/Microparticles and Their Combinations against Pathogenic Microorganisms for Biomedical Applications: From Physicochemical Characteristics to Pharmacological Aspects: Review. Nanomaterials. 2012. 11(2): 263. https://doi.org/10.3390/nano11020263

6. Thuhin K., Arman H., Mamun J., Islam M.R., Rahman M.M., Uddin M.E., Islam M.S. Zinc Oxide Nanoparticle Reinforced Waste Buffing Dust Based Composite Insole and Its Antimicrobial Activity. Adv. Polym. Technol. 2022. 2022: 1. https://doi.org/10.1155/2022/7130551

7. Mousam C., Harsimran S., Karishma S., Harpreet S., Ishita M. Antimicrobial polymeric composites in consumer goods and healthcare sector: A healthier way to prevent infection. Polym. Adv. Technol. 2022. 33(7): 1997. https://doi.org/10.1002/pat.5660

8. Yudaev P., Chuev V., Klyukin B., Kuskov A., Mezhuev Y., Chistyakov E. Polymeric Dental Nanomaterials: Antimicrobial Action. Polymers. 2022. 14(5): 864. https://doi.org/10.3390/polym14050864

9. Carrouel F., Viennot S., Ottolenghi L., Gaillard C., Bourgeois D. Nanoparticles as Anti-Microbial, Anti-Inflammatory, and Remineralizing Agents in Oral Care Cosmetics: A Review of the Current Situation. Nanomaterials. 2020. 10(1): 140. https://doi.org/10.3390/nano10010140

10. Ferrando-Magraner E., Bellot-Arcís C., Paredes-Gallardo V., Almerich-Torres T., García-Sanz V., Fernández-Estevan L., Montiel-Company J.M., Solá-Ruiz M.F. Antibacterial Properties of Nanoparticles in Dental Restorative Materials. A Systematic Review and Meta-Analysis. Medicina. 2020. 56(2): 55. https://doi.org/10.3390/medicina56020055

11. Gu J., Ford T., Mitton D.B., Mitchell R. Microbial degradation and deterioration of polymeric materials. In: The Uhlig Corrosion Handbook. 2nd ed. (New York: Wiley, 2000). P. 439.

12. Mitchell R., Gu J.-D., Roman M., Soulkup S. Hazards to space missions from microbial biofilms. In: Biodeterioration and Biodegradation. DECHEMA Monographs, V. 1. (Frankfurt: VCH Verlagsgesellschaft, 1996). P. 3.

13. Wang P., Ryan J., Manoj S., Wang L., Yang K.K., Kim J., Li J., Jones T.S., Wysocki J., Leipold M.D., Xu Y., Gomez J., Invergo B., Zhou B., Baker D., King N.P., Kirchhausen T., Walter M.R., Kanekiyo M., Topham D.J. Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization: Brief Report. Cell Host Microbe. 2021. 29(5): 747. https://doi.org/10.1016/j.chom.2021.04.007

14. Doi Y. Microbial Polyesters. (New York: VCH Publishers, 1990).

15. Narayan R. Biodegradation of polymeric materials (anthropogenic macromolecules) during composting. In: Science and Engineering of Composting: Design, Environmental, Microbiological and Utilization Aspects. Ed. Hoitink H.A.J., Keener H.M. (Washington, OH: Renaissance Publishers, 1993). P. 339.

16. Atlas R.M., Bartha R. Microbial Ecology: Fundamentals and Applications. 4th ed. (Menlo Park, CA: Benjamin/Cummings Publishing Company, 1997).

17. Martin A. Introduction to Soil Microbiology. 2nd ed. (New York: Wiley, 1977).

18. Barlaz M.A., Ham R.K., Schaefer D.M. Mass-balance analysis of anaerobically decomposed refuse. J. Environ. Eng. 1989. 115(6): 1088. https://doi.org/10.1061/(ASCE)0733-9372(1989)115:6(1088)

19. Kim M., Zabriskie D.W. Enzymatic production of ethanol from cellulose using soluble cellulose acetate as an intermediate. Biotechnol. Bioeng. 1987. 29(9): 1086. https://doi.org/10.1002/bit.260290908

20. Santhosh S., Kandasamy N. Antibiofilm Activity of Epoxy /Ag-TiO2 Polymer Nanocomposite Coatings against Staphylococcus Aureus and Escherichia Coli. Coatings. 2015. 5(2): 95. https://doi.org/10.3390/coatings5020095

21. Ramish K., Bankim C. Retention of mechanical and thermal properties of hydrothermal aged glass fiber-reinforced polymer nanocomposites. Polymer Plastics Technology and Engineering. 2018. 57(16): 1. https://doi.org/10.1080/03602559.2017.1419486

22. Farzaneh B., Mehrdad M., Mahdi A. Evaluation of moisture diffusion as a threat to polymer/inorganic nanoparticles composites properties: Polystyrene/calcium sulfate nanocomposite as a case study. Polym. Polym. Compos. 2021. 29(8): 1. https://doi.org/10.1177/0967391120956867

23. Amr S. Ismail, Salah M. Tawfik, Amr H. Mady, Yong-Ill Lee. Preparation, Properties, and Microbial Impact of Tungsten(VI) Oxide and Zinc(II) Oxide Nanoparticles Enriched Polyethylene Sebacate Nanocomposites. Polymers. 2021. 13(5): 718. https://doi.org/10.3390/polym13050718

24. Raghad H., Rafah A. Study on adsorption of some metals from waste solution by (unsaturated polyester polyester-kaolin) composite. Kuwait Journal of Science. 2023. 50(3): 257. https://doi.org/10.1016/j.kjs.2023.01.010

25. Li P., Pu X., Shen H., Zhang J., Huang N., Lin B. Biofilm formation by Fusarium oxysporum f. sp. cucumerinum and susceptibility to environmental stress. FEMS Microbiol. Lett. 2014. 350(2): 138. https://doi.org/10.1111/1574-6968.12310

26. Castillo U.F., Browne L., Strobel G., Hess W.M., Ezra S., Pacheco G., Ezra D. Biologically active endophytic streptomycetes from Nothofagus spp. and other plants in Patagonia. Microbial Ecology. 2007. 53: 12. https://doi.org/10.1007/s00248-006-9129-6

27. Castillo U., Myers Sh., Browne L., Strobel G.A., Hess W.M., Hanks J.H., Reay D. Scanning electron microscopy of some endophytic streptomycetes in snakevine- Kennedia nigriscans. Scanning. 2005. 27(6): 305. https://doi.org/10.1002/sca.4950270606

28. Rana M. Effect of water absorption on some mechanical and physical properties of unsaturated polyester/polyurethane blend reinforced with nano silica. Iraqi Journal of Physics. 2017. 15(32): 92. https://doi.org/10.30723/ijp.v15i32.159

29. Ahangar E.G., Abbaspour-Fard M.H., Shahtahmassebi N., Khojastehpour M., Maddahi P. Preparation and characterization of PVA/ZnO nanocomposite. J. Food Process. Preserv. 2014. 39(6): 1442. https://doi.org/10.1111/jfpp.12363

30. Muthukumar N., Thilagavathi G. Development and characterization of electrically conductive polyaniline coated fabrics. Indian J. Chem. Technol. 2012. 19(6): 434.

31. Thomas P.C., Thomas S.P., George G., Thomas S., Kuruvilla J. Impact of filler geometry and surface chemistry on the degree of reinforcement and thermal stability of nitrile rubber nanocomposites. J. Polym. Res. 2012. 18: 2367. https://doi.org/10.1007/s10965-011-9651-1

32. Nah Ch., Jung Ryu H., Doo Kim W., Chang Y.-W. Preparation and properties of acrylonitrile-butadiene copolymer hybrid nanocomposites with organoclays. Polym. Int. 2003. 52(8): 1359. https://doi.org/10.1002/pi.1227

33. Hwang W., Wei K., Wu C. Preparation and mechanical properties of nitrile butadiene rubber/silicate nanocomposites. Polymer. 2004. 45(16): 5729. https://doi.org/10.1016/j.polymer.2004.05.040

34. Sugiman S., Salman S., Maryudi M. Effects of volume fraction on water uptake and tensile properties of epoxy filled with inorganic fillers having different reactivity to water. Mater. Today Commun. 2020. 24: 101360. https://doi.org/10.1016/j.mtcomm.2020.101360

35. Kim D., Lee S., Kwon H., Seo J. Water Resistance and Antimicrobial Properties of Poly(vinyl alcohol) Composite Films Containing Surface-modified Tetrapod Zinc Oxide Whiskers. Macromol. Res. 2015. 23(12): 1134. https://doi.org/10.1007/s13233-015-3148-4

36. Nassif R.A., Hilal R.H., Salih R.M. Preparation and characterisation of polymer blends reinforced with nano-ZnO and study the thermal and electrical properties for industrial applications. Kuwait Journal of Science. 2024. 51(1): 100129. https://doi.org/10.1016/j.kjs.2023.09.003

37. Besharat F., Manteghian M., Abdollahi M. Evaluation of moisture diffusion as a threat to polymer/inorganic nanoparticles composites properties: Polystyrene/calcium sulfate nanocomposite as a case study. Polym. Polym. Compos. 2020. 8: 1167. https://doi.org/10.1177/0967391120956867

38. Hilal R.H., Nassif R.A. Study on adsorption of some metals from waste solution by (unsaturated polyester-kaolin) composite. Kuwait Journal of Science. 2023. 50(1): 257. https://doi.org/10.1016/j.kjs.2023.01.010

39. Ladhari A., Daly H.B., Belhadjsalah H., Cole K.C., Denault J. Investigation of water absorption in clay-reinforced polypropylene nanocomposites. Polym. Degrad. Stab. 2010. 95(5): 429. https://doi.org/10.1016/j.polymdegradstab.2009.12.001




DOI: https://doi.org/10.15407/hftp16.01.018

Copyright (©) 2025

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.