Chemistry, Physics and Technology of Surface, 2025, 16 (1), 39-50.

Impact of the TiO2 polymorphic modifications and сitric acid amount on the particle size and crystallite formation of lithium-containing titanium oxides under the melting route



DOI: https://doi.org/10.15407/hftp16.01.039

I. M. Shcherbatiuk, T. V. Lisnycha, K. D. Pershina

Abstract


The presented work aimed to synthesize and melt lithium- containing titanium oxides in the citric acid media, and to determine the impact of the ratio of TiO2 polymorphic modifications and сitric acid amount on the particle size and crystallite formation. New approaches for changing particle and crystallite size were performed based on the post-synthetic melting treatment in the solid citric acid of the Li- containing TiO2 powders. The X-ray powder diffraction analysis detected the main TiO2 polymorphs phases (anatase, rutile, Ti6O11, Ti3O5, Li0.026TiO2, and lithium titanium oxide (2.7/1.3/4) in all samples prepared via orthotitanic acid alkaline hydrolysis and under the melting route in citric acid media. There was a correlation between the ratio of citric acid in the melting mixture and crystallite size in ending products. The maximum anatase crystallite size (10372 nm) was detected in the samples prepared in media with a large surplus of citric acid. The total pore volume (Vtotal) was calculated from the volume of nitrogen adsorbed converted to liquid at a pressure close to P/P0 = 1. All samples were found to involve two kinds of pores: micropores with approx. 1÷2 nm radius, and mesopores with approx. 10÷29 nm radius. The samples’ SEM analysis also detected the size of the two kinds of particles in all samples. Increasing amounts of citric acid lead to increasing amounts of particles with size < 100 nm in the presence of small amounts of large-scale (> 900 nm) particles. The maximum pore and particle size were detected after melting treatment TiO2 polymorphs in media with a large surplus of citric acid. It was proposed a scheme of crystallite formation in the presence of Magnéli phases and reductants from the thermal decomposition of citric acid.


Keywords


titanium oxides; polymorphic modifications; orthotitanic acid alkaline hydrolysis; сitric acid; melting treatment; pore size; particle size

References


1. Li F., Wei Z., Manthiram A., Feng Y., Ma J., Mai L. Sodium-based batteries: from critical materials to battery systems. J. Mater. Chem. A. 2019. 7(16): 9406. https://doi.org/10.1039/C8TA11999F

2. Wu Y.P., Rahm E., Holze R. Effects of heteroatoms on electrochemical performance of electrode materials for lithium ion batteries. Electrochim. Acta. 2002. 47(21): 3491. https://doi.org/10.1016/S0013-4686(02)00317-1

3. Qian H., Ren H., Zhang Y., He X., Li W., Wang J., Hu J., Yang H., Sari H.M.Kh., Chen Yu, Li X. Surface doping vs. bulk doping of cathode materials for lithium-ion batteries: a review. Electrochem. Energy Rev. 2022. 5(4): 2. https://doi.org/10.1007/s41918-022-00155-5

4. Guo Y.G., Hu Y.S., Sigle W., Maier J. Superior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting networks. Adv. Mater. 2007. 19(16): 2087. https://doi.org/10.1002/adma.200602828

5. Deng H., Lin L., Ji M., Zhang S., Yang M., Fu Q. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog. Polym. Sci. 2014. 39(4): 627. https://doi.org/10.1016/j.progpolymsci.2013.07.007

6. Zhang Y., Tao L., Xie C., Wang D., Zou Y., Chen R., Wang Y., Jia Ch., Wang Sh. Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 2020. 32(7): 1905923. https://doi.org/10.1002/adma.201905923

7. Zhang A., Liang Y., Zhang H., Geng Z., Zeng J. Doping regulation in transition metal compounds for electrocatalysis. Chem. Soc. Rev. 2021. 50(17): 9817. https://doi.org/10.1039/D1CS00330E

8. Ellis B.L., Knauth P., Djenizian T. Three‐dimensional self‐supported metal oxides for advanced energy storage. Adv. Mater. 2014. 26(21): 3368. https://doi.org/10.1002/adma.201306126

9. Hallot M., Boyaval C., Troadec D., Huve M., Karroubi L.B., Patnaik S.G., ...&Lethien, C. Three-Dimensional TiO2 Film Deposited by ALD on Porous Metallic Scaffold for 3D Li-Ion Micro-Batteries: A Road towards Ultra-High Capacity Electrode. J. Electrochem. Soc. 2022. 169(4): 040523. https://doi.org/10.1149/1945-7111/ac6328

10. Dylla A.G., Henkelman G., Stevenson K.J. Lithium insertion in nanostructured TiO2 (B) architectures. Acc. Chem. Res. 2013. 46(5): 1104. https://doi.org/10.1021/ar300176y

11. Berger T., Monllor‐Satoca D., Jankulovska M., Lana‐Villarreal T., Gomez R. The electrochemistry of nanostructured titanium dioxide electrodes. ChemPhysChem. 2012. 13(12): 2824. https://doi.org/10.1002/cphc.201200073

12. Liu R., Duay J., Lee S.B. Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem. Commun. 2011. 47(5): 1384. https://doi.org/10.1039/C0CC03158E

13. Dambournet D. Cationic vacancies in anatase (TiO2): synthesis, defect characterization, and ion-intercalation properties. Acc. Chem. Res. 2022. 55(5): 696. https://doi.org/10.1021/acs.accounts.1c00728

14. Liu Z.G., Du R., He X.X., Wang J.C., Qiao Y., Li L., Chou S.L. Recent progress on intercalation‐based anode materials for low‐cost sodium‐ion batteries. ChemSusChem. 2021. 14(18): 3724. https://doi.org/10.1002/cssc.202101186

15. Bresser D., Paillard E., Binetti E., Krueger S., Striccoli M., Winter M., Passerini S. Percolating networks of TiO2 nanorods and carbon for high power lithium insertion electrodes. J. Power Sources. 2012. 206: 301. https://doi.org/10.1016/j.jpowsour.2011.12.051

16. Muniz F.T.L., Miranda M.R., Morilla dos Santos C., Sasaki J.M. The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallographica Section A: Foundations and Advances. 2016. 72(3): 385. https://doi.org/10.1107/S205327331600365X

17. Zanatta A.R. A fast-reliable methodology to estimate the concentration of rutile or anatase phases of TiO2. AIP Adv. 2017. 7(7): 075201. https://doi.org/10.1063/1.4992130 

18. Wang Y., Feng T., Li X., Li L. Thermochemistry of nano-phased titanium dioxides relevant to energy application: A Review. Chem. Thermodyn. Therm. Anal. 2022. 5: 100033. https://doi.org/10.1016/j.ctta.2021.100033

19. Hanaor D.A., Sorrell C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011. 46: 855. https://doi.org/10.1007/s10853-010-5113-0

20. Wagemaker M., Borghols W.J., Mulder F.M. Large impact of particle size on insertion reactions. a case for anatase Li x TiO2. J. Am. Chem. Soc. 2007. 129(14): 4323. https://doi.org/10.1021/ja067733p

21. Picquart M., Escobar-Alarcon L., Torres E., Lopez T., Haro-Poniatowski E. Structural study of lithium titanium mixed oxides prepared by sol-gel process. J. Mater. Sci. 2002. 37: 3241. https://doi.org/10.1023/A:1016126832567

22. Malik H., Sarkar S., Mohanty S., Carlson K. Modelling and synthesis of Magnéli Phases in ordered titanium oxide nanotubes with preserved morphology. Sci. Rep. 2020. 10(1): 8050. https://doi.org/10.1038/s41598-020-64918-0

23. Xu B., Sohn H.Y., Mohassab Y., Lan Y. Structures, preparation and applications of titanium suboxides. RSC Adv. 2016. 6(83): 79706. https://doi.org/10.1039/C6RA14507H

24. Castro R.H., Wang B. The hidden effect of interface energies in the polymorphic stability of nanocrystalline titanium dioxide. J. Am. Ceram. Soc. 2011. 94(3): 918. https://doi.org/10.1111/j.1551-2916.2010.04164.x

25. Ranade M.R., Navrotsky A., Zhang H.Z., Banfield J.F., Elder S.H., Zaban A., Borse P.H., Kulkarni S.K., Doran G.S., Whitfield H.J. Energetics of nanocrystalline TiO2. Proceedings of the National Academy of Sciences. 2002. 99(suppl_2): 6476. https://doi.org/10.1073/pnas.251534898

26. Barnard A.S., Erdin S., Lin Y., Zapol P., Halley J.W. Modeling the structure and electronic properties of TiO2 nanoparticles. Phys. Rev. B. 2006. 73(20): 205405. https://doi.org/10.1103/PhysRevB.73.205405

27. Raj K., Viswanathan B. Effect of surface area, pore volume and particle size of P25 titania on the phase transformation of anatase to rutile. Indian J. Chem. 2009. 48A: 1378 

28. Barbooti M.M., Al-Sammerrai D.A. Thermal decomposition of citric acid. Thermochim. Acta. 1986. 98: 119. https://doi.org/10.1016/0040-6031(86)87081-2

29. Chen Y., Deng Y., Zhang H., Wang L., Ma J. A novel and simple route to synthesis nanocrystalline titanium carbide via the reaction of titanium dioxide and different carbon source. Mater. Sci. Appl. 2011. 2(11): 1622. https://doi.org/10.4236/msa.2011.211215

30. Winter J.H., Tate B.E. Polymerization of itaconic acid and derivatives. In: Fortschritte der Hochpolymeren-Forschung. (Springer Berlin Heidelberg, 1967). pp. 214-232. https://doi.org/10.1007/BFb0051282




DOI: https://doi.org/10.15407/hftp16.01.039

Copyright (©) 2025

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.