Chemistry, Physics and Technology of Surface, 2025, 16 (1), 83-89.

Van der Waals interaction between spherical metallic nanoparticles with mutually induced polarization



DOI: https://doi.org/10.15407/hftp16.01.083

N. A. Smirnova, A. V. Korotun, I. M. Titov, E. V. Stegantsev

Abstract


An influence of multipole plasmonic resonances, excited on the surface of the spherical metallic nanoparticles, on van der Waals interaction between nanoparticles is investigated in this work. The relations for the size dependences of the interaction free energy, Hamaker parameter and van der Waals force are obtained. It is shown that the improper integral, included in the obtained expressions, is convergent, and the sum is easily calculated due to the fast convergence of the series at increasing multipolarity. The calculations were performed for the case of interaction between spherical nanoparticles of the different radii and different metals in air, on the surface of which the localized plasmonic resonances are excited. It is found that the increase in the distance between the nanoparticles results in the decrease in free energy and van der Waals force and in the increase in Hamaker parameter. In turn, the free energy practically does not change with the change of nanoparticle material and increases sharply with the increase in radius of nanoparticles. In contrast to the free energy, the increase in the nanoparticle radius results in the decrease in Hamaker parameter. The decrease in Hamaker parameter at the same distance between particles takes place when changing their composition (using metals with decreasing plasma frequency). The distance between nanoparticles, at which the sharp decrease in van der Waals force changes to the smooth one, has been determined. The comparison of the calculation results with the case of van der Waals interaction between spherical nanoparticles, caused by electromagnetic fluctuations with the continuous spectrum, is carried out. It is shown that the qualitative character of the size dependences of the free energy and Hamaker parameter remains the same: the free energy decreases and Hamaker parameter increases with increasing distance between interacting nanoparticles. At the same time in the case of the particles with the localized plasmons, excited on their surfaces, the free energy is greater and Hamaker parameter is less than in the case of electromagnetic fluctuations with the continuous spectrum.


Keywords


van der Waals interaction; surface plasmonic resonance; free energy; Hamaker parameter; spherical metallic nanoparticles

References


1. Taylor R.W., Lee T.-C., Scherman O.A., Esteban R., Aizpurua J., Huang F.M., Baumberg J.J., Mahajan S. Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril "glue". ACS Nano. 2012. 5(5): 3878. https://doi.org/10.1021/nn200250v

2. Sibug-Torres S.M., Grys D.-B., Kang G., Niihori M., Wyatt E., Spiesshofer N., Ruane A., de Nijs B., Baumberg J.J. In situ electrochemical regeneration of nanogap hotspots for continuously reusable ultrathin SERS sensors. Nat. Commun. 2024. 15(1): 2022. https://doi.org/10.1038/s41467-024-46097-y

3. Curto A.G., Volpe G., Taminiau T.H., Kreuzer M.P., Quidant R., Hulst van N.F. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science. 2010. 329(5994): 930. https://doi.org/10.1126/science.1191922

4. Novotny L., Hulst van N. Antennas for light. Nat. Photonics. 2011. 5: 83. https://doi.org/10.1038/nphoton.2010.237

5. Shoup D.N., Fan S., Zapata-Herrera M., Schorr H.C., Aizpurua J., Schultz Z.D. Comparison of Gap-Enhanced Raman Tags and Nanoparticle Aggregates with Polarization Dependent Super-Resolution Spectral SERS Imaging. Anal. Chem. 2024. 96(28): 11422. https://doi.org/10.1021/acs.analchem.4c01564

6. Atwater H.A., Polman A. Plasmonics for improved photovoltaic devices. Nat. Mater.2010. 9: 205. https://doi.org/10.1038/nmat2629

7. Prodan E., Radloff C., Halas N.J., Nordlander P. A hybridization model for the plasmon response of complex nanostructures. Science. 2003. 302(5644): 419. https://doi.org/10.1126/science.1089171

8. Nordlander P., Oubre C., Prodan E., Li K., Stockman M.I. Plasmon hybridization in nanoparticle dimers. Nano Lett. 2004. 4(5): 899. https://doi.org/10.1021/nl049681c

9. Aubry A., Lei D.Y., Maier S.A., Pendry J.B. Interaction between plasmonic nanoparticles revisited with transformation optics. Phys. Rev. 2010. 105(23): 233901. https://doi.org/10.1103/PhysRevLett.105.233901

10. Savage K.J., Hawkeye M.M., Esteban R., Borisov A.G., Aizpurua J., Baumberg J.J. Revealing the quantum regime in tunnelling plasmonics. Nature. 2012. 491: 574. https://doi.org/10.1038/nature11653

11. Esteban R., Borisov A.G., Nordlander P., Aizpurua J. Bridging quantum and classical plasmonics with a quantum-corrected model. Nat. Commun. 2012. 3(1-9): 825. https://doi.org/10.1038/ncomms1806

12. van Beijnum F., Retif C., Smiet C.B., Liu H., Lalanne P., Exter van M.P. Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission. Nature. 2012. 492: 411. https://doi.org/10.1038/nature11669

13. Scholl J.A., Koh A.L., Dionne J.A. Quantum plasmon resonances of individual metallic nanoparticles. Nature. 2012. 483: 421. https://doi.org/10.1038/nature10904

14. Movsisyan A., Parsamyan H. Gap-enhanced optical bistability in plasmonic core-nonlinear shell dimers. Nanoscale. 2024. 16(4): 2030. https://doi.org/10.1039/D3NR04237E

15. Jiang N., Zhuo X., Wang J. Active plasmonics: principles, structures, and applications. Chem. Rev. 2017. 118(6): 3054. https://doi.org/10.1021/acs.chemrev.7b00252

16. Li Z., Yin Y. Stimuli-responsive optical nanomaterials. Adv. Mater. 2019. 31(15): 1807061. https://doi.org/10.1002/adma.201807061

17. Jain P.K., El-Sayed M.A. Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett. 2010. 487(4-6): 153. https://doi.org/10.1016/j.cplett.2010.01.062

18. Li Z., Yin S., Cheng L., Yang K., Li Y., Liu Z. Magnetic targeting enhanced theranostic strategy based on multimodal imaging for selective ablation of cancer. Adv. Funct. Mater. 2014. 24(16): 2312. https://doi.org/10.1002/adfm.201303345

19. Han X., Liu Y., Yin Y. Colorimetric stress memory sensor based on disassembly of gold nanoparticle chains. Nano Lett. 2014. 14(5): 2466. https://doi.org/10.1021/nl500144k

20. Guerrini L., Graham D. Molecularly-mediated assemblies of plasmonic nanoparticles for surface-enhanced Raman spectroscopy applications. Chem. Soc. Rev. 2012. 41(21): 7085. https://doi.org/10.1039/c2cs35118h

21. Brongersma M.L., Halas N.J., Nordlander P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015. 10: 25. https://doi.org/10.1038/nnano.2014.311

22. Smirnova N.A., Korotun A.V., Kulykovskyi R.A. Plasmon-induced acceleration of polymerization reactions by spherical bimetallic nanoparticles. Him. Fiz. Tehnol. Poverhni. 2024. 15(2): 171. https://doi.org/10.15407/hftp15.02.171

23. Teperik T.V., Nordlander P., Aizpurua J., Borisov A.G. Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response. Phys. Rev. Lett. 2013. 110: 263901. https://doi.org/10.1103/PhysRevLett.110.263901

24. Liu N., Hentschel M., Weiss T., Alivisatos A.P., Giessen H. Three-dimensional plasmon rulers. Science. 2011. 332(6036): 1407. https://doi.org/10.1126/science.1199958

25. Wong Z.J., Wang Y., O'Brien K., Rho J., Yin X., Zhang S., Fang N., Yen T.-J., Zhang X. Optical and acoustic metamaterials: superlens, negative refractive index and invisibility cloak. J. Opt. 2017. 19: 084007. https://doi.org/10.1088/2040-8986/aa7a1f

26. Huang P., Lin J., Li W., Rong P., Wang Z., Wang S., Wang X., Sun X., Aronova M., Niu G., Leapman R.D., Nie Z., Chen X. Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. Angew. Chem. Int. Ed. 2013. 52(52): 13958. https://doi.org/10.1002/anie.201308986

27. Wang H.N., Vo-Dinh T. Plasmonic coupling interference (PCI) nanoprobes for nucleic acid detection. Small. 2011. 7(21): 3067. https://doi.org/10.1002/smll.201101380

28. Smirnova N.A., Korotun A.V., Titov I.M. Size Dependences of Hamaker's Parameter and Free Energy of Van der Waals Interaction for System of Two Spherical Metal Nanoparticles. Metallophys. Adv. Technol. 2022. 44(5): 587. https://doi.org/10.15407/mfint.44.05.0587

29. Pavlyshche N.I., Korotun A.V., Kurbatsky V.P. Optical absorption of composites with metallic nanosized spheroidal particles. Him. Fiz. Tehnol. Poverhni. 2023. 14(4): 561. https://doi.org/10.15407/hftp14.04.561

30. Korotun A.V., Moroz H.V., Korolkov R.Yu. Q-factor of plasmonic resonances and the field enhancement in the neighborhood of the spherical metallic nanoparticle. Funct. Mater. 2024. 31(1): 119. https://doi.org/10.15407/fm31.01.119

 




DOI: https://doi.org/10.15407/hftp16.01.083

Copyright (©) 2025

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.