Chemistry, Physics and Technology of Surface, 2025, 16 (1), 115-129.

Nanosized luminescent hydroxyapatite doped with terbium: synthesis and characterization



DOI: https://doi.org/10.15407/hftp16.01.115

O. D. Shchehlov, A. P. Kusyak, O. I. Oranska, R. M. Kravchuk, A. L. Petranovska, Ya. M. Shuba, P. P. Gorbyk

Abstract


The aim of this work is to synthesize a new nanostructured biocompatible material with a high ability to X-ray-induced luminescence. Terbium-doped hydroxyapatite known for its biocompatibility and non-toxicity was synthesized in two ways: 1) by precipitation of Ca2+ and Tb3+ ions with (NH4)2HPO4 solution in the presence of various biocompatible modifiers (CTAB, PEG-2000, trisodium citrate dihydrate); 2) by cationic substitution of hydroxyapatite in the presence of the same modifiers at pH 4 and pH 6. The stoichiometric ratio (Ca+Tb)/P in the initial solutions was maintained at the level of biological hydroxyapatite.

Based on the results of DLS, ELS, and X-ray-induced luminescence studies, it was found that the sample with the best key properties, such as ζ-potential and X-ray-induced luminescence, was the sample of hydroxyapatite doped with 5% (mol), synthesized by co-precipitation procedure in presence of trisodium citrate dihydrate. Further studies by TEM, FTIR, FT-NIR, TG/DTG/DTA, XRD, low-temperature nitrogen adsorption-desorption, and ICP-AES confirm that the sample has a surface functionalized with citrate groups, which causes high colloidal stability and can provide high adsorption potential. The value of the (Ca+Tb)/P ratio is 2.21 (wt %), which is close to that of biological hydroxyapatite. The nanocomposite is characterized by high X-ray-induced luminescence and may be promising for adsorption immobilization of biologically active compounds.

The results of the study indicate that the optimized conditions for the synthesis of nanophosphors have been found, which are potential candidates for biomedical applications, given their luminescent properties, low toxicity, and the possibility of further surface functionalization for adsorption saturation with molecules of medical interest.


Keywords


nanoparticles; nanocomposites; luminescence; lanthanides; hydroxyapatite; terbium

References


1. Srinivasan M., Rajabi M., Mousa S. Multifunctional Nanomaterials and Their Applications in Drug Delivery and Cancer Therapy. Nanomaterials. 2015. 5(4): 1690. https://doi.org/10.3390/nano5041690

2. Reiss P., Protière M., Li L. Core/Shell Semiconductor Nanocrystals. Small. 2009. 5(2): 154. https://doi.org/10.1002/smll.200800841

3. Lin M., Zhao Y., Wang S., Liu M., Duan Z., Chen Y., Li F., Xu F., Lu T. Recent Advances in Synthesis and Surface Modification of Lanthanide-doped Upconversion Nanoparticles for Biomedical Applications. Biotechnol. Adv., 2012. 30(6): 1551. https://doi.org/10.1016/j.biotechadv.2012.04.009

4. Zheng B., Fan J., Chen B., Qin X., Wang J., Wang F., Deng R., Liu X. Rare-Earth Doping in Nanostructured Inorganic Materials. Chem. Rev. 2022. 122(6): 5519. https://doi.org/10.1021/acs.chemrev.1c00644

5. Kang X., Huang S., Yang P., Ma P., Yang D., Lin J. Preparation of Luminescent and Mesoporous Eu3+/Tb3+ Doped Calcium Silicate Microspheres as Drug Carriers via a Template Route. Dalton Trans. 2011. 40(9): 1873. https://doi.org/10.1039/C0DT01390K

6. Wu Y., Wang Y., He D., Fu M., Chen Z., Li Y. Spherical Zn2SiO4:Eu3+@SiO2 Phosphor Particles in Core-shell Structure: Synthesis and Characterization. J. Lumin. 2010. 130(10): 1768. https://doi.org/10.1016/j.jlumin.2010.04.008

7. Zhong S.-L., Lu Y., Gao M.-R., Liu S.-J., Peng J., Zhang L.-C., Yu S.-H. Monodisperse Mesocrystals of YF3 and Ce3+/Ln3+ (Ln = Tb, Eu) Co-Activated YF3: Shape Control Synthesis, Luminescent Properties, and Biocompatibility. Chem. Eur. J. 2012. 18(17): 5222. https://doi.org/10.1002/chem.201102840

8. Yang M., You H., Liu K., Zheng Y., Guo N., Zhang H. Low-Temperature Coprecipitation Synthesis and Luminescent Properties of LaPO4:Ln3+ (Ln3+ = Ce3+, Tb3+) Nanowires and LaPO4:Ce3+, Tb3+/LaPO4 Core/Shell Nanowires. Inorg. Chem. 2010. 49(11): 4996.

9. Liu H., Chen F., Xi P., Chen B., Huang L., Cheng J., Shao C., Wang J., Bai D., Zeng Z. Biocompatible Fluorescent Hydroxyapatite: Synthesis and Live Cell Imaging Applications. J. Phys. Chem. C. 2011. 115(38): 18538. https://doi.org/10.1021/jp206843w

10. Krishnapriya T.K., Deepti A., Chakrapani P.S., Asha A.S., Jayaraj M.K. Biocompatible, Europium-Doped Fluorapatite Nanoparticles as a Wide-Range pH Sensor. J. Fluoresc. 2023. 34: 2543. https://doi.org/10.1007/s10895-023-03461-3

11. Lara-Ochoa S., Ortega-Lara W., Guerrero-Beltrán C.E. Hydroxyapatite Nanoparticles in Drug Delivery: Physicochemistry and Applications. Pharmaceutics. 2021. 13(10): 1642. https://doi.org/10.3390/pharmaceutics13101642

12. Uskokovic V., Desai T.A. Phase Composition Control of Calcium Phosphate Nanoparticles for Tunable Drug Delivery Kinetics and Treatment of Osteomyelitis. I. Preparation and drug release. J. Biomed. Mater. Res. A. 2013. 101(5): 1416. https://doi.org/10.1002/jbm.a.34426

13. Matsumoto T., Okazaki M., Inoue M., Yamaguchi S., Kusunose T., Toyonaga T., Hamada Y., Takahashi J. Hydroxyapatite Particles as a Controlled Release Carrier of Protein. Biomaterials. 2004. 25(17): 3807. https://doi.org/10.1016/j.biomaterials.2003.10.081

14. Zhang S., Ma X., Sha D., Qian J., Yuan Y., Liu C. A Novel Strategy for Tumor Therapy: Targeted, PAA-Functionalized Nano-hydroxyapatite Nanomedicine. J. Mater. Chem. B. 2020. 8(41): 9589. https://doi.org/10.1039/D0TB01603A

15. Venkatasubbu G.D., Ramasamy S., Avadhani G.S., Ramakrishnan V., Kumar J. Surface Modification and Paclitaxel Drug Delivery of Folic Acid Modified Polyethylene Glycol Functionalized Hydroxyapatite Nanoparticles. Powder Technol. 2013. 235: 437. https://doi.org/10.1016/j.powtec.2012.11.003

16. Gu M., Li W., Jiang L., Li X. Recent Progress of Rare Earth Doped Hydroxyapatite Nanoparticles: Luminescence Properties, Synthesis and Biomedical Applications. Acta Biomater. 2022. 148: 22. https://doi.org/10.1016/j.actbio.2022.06.006

17. Neacsu I.A., Stoica A.E., Vasile B.S., Andronescu E. Luminescent Hydroxyapatite Doped with Rare Earth Elements for Biomedical Applications. Nanomaterials. 2019. 9(2): 239. https://doi.org/10.3390/nano9020239

18. De Lama-Odría M.d.C., Valle L.J.d., Puiggalí J. Lanthanides-Substituted Hydroxyapatite for Biomedical Applications. Int. J. Mol. Sci. 2023. 24(4): 3446. https://doi.org/10.3390/ijms24043446

19. Šupová M. Substituted Hydroxyapatites for Biomedical Applications: a Review. Ceram. Int. 2015. 41(8): 9203. https://doi.org/10.1016/j.ceramint.2015.03.316

20. Kusyak A., Petranovska A., Oranska O., Turanska S., Shuba Ya., Kravchuk D., Kravchyk L., Sotkis G., Nazarenko V., Kravchuk R., Dubok V., Bur'yanov O., Chornyi V., Sobolevs'kyy Yu., Gorbyk P. Synthesis and Properties of Nanodispersed Luminescent Structures Based on Lanthanum Fluoride and Phosphate for Optopharmacology and Photodynamic Therapy of Tumor Diseases Localized in Cranial Organs and Bone Tissues. Chapter 3. (New York: Nova Science Publishers Inc., 2023).

21. Zilm M.E., Chen L., Sharma V., McDannald A., Jain M., Ramprasad R., Wei M. Hydroxyapatite Substituted by Transition Metals: Experiment and Theory. Phys. Chem. Chem. Phys. 2016. 18(24): 16457. https://doi.org/10.1039/C6CP00474A

22. Tite T., Popa A.-C., Balescu L.M., Bogdan I.M., Pasuk I., Ferreira J.M.F., Stan G.E. Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods. Materials. 2018. 11(11): 2081. https://doi.org/10.3390/ma11112081

23. Chen M.-H., Yoshioka T., Ikoma T., Hanagata N., Lin F.-H., Tanaka J. Photoluminescence and Doping Mechanism of Theranostic Eu3+/Fe3+ Dual-doped Hydroxyapatite Nanoparticles. Sci. Technol. Adv. Mater. 2014. 15(5): 055005. https://doi.org/10.1088/1468-6996/15/5/055005

24. Alshemary A.Z., Akram M., Goh Y.-F., Abdul Kadir M.R., Abdolahi A., Hussain R. Structural Characterization, Optical Properties and In Vitro Bioactivity of Mesoporous Erbium-doped Hydroxyapatite. J. Alloys Compd. 2015. 645: 478. https://doi.org/10.1016/j.jallcom.2015.05.064

25. Ahmed L.O., Bulut N., Bañares L., Kaygili O., Kebiroglu M., Ates T., Koytepe S., Ates B. Exploring the Electronic Band Structure, Spectroscopic Signatures, and Structural Properties of Er3+-based Hydroxyapatites Co-doped with Ce3+ Ions. Inorg. Chem. Commun. 2023. 155(37): 111067. https://doi.org/10.1016/j.inoche.2023.111067

26. Wei Y., He Y., Li X., Chen H., Deng X. Cellular Uptake and Delivery-Dependent Effects of Tb3+-Doped Hydroxyapatite Nanorods. Molecules. 2017. 22(7): 1043. https://doi.org/10.3390/molecules22071043

27. Yin H., Li Y., Bai J., Ma M., Liu J. Effect of Calcinations Temperature on the Luminescence Intensity and Fluorescent Lifetime of Tb3+-doped Hydroxyapatite (Tb-HA) Nanocrystallines. J. Materiomics. 2017. 3(2): 144. https://doi.org/10.1016/j.jmat.2016.11.004

28. Ghosh R., Sarkar R., Paul S. Development of Machinable Hydroxyapatite-Lanthanum Phosphate Composite for Biomedical Applications. Mater. Design. 2016. 106: 161. https://doi.org/10.1016/j.matdes.2016.05.104

29. Venkatasubbu G.D., Ramasamy S., Avadhani G.S., Ramakrishnan V., Kumar J. Surface Modification and Paclitaxel Drug Delivery of Folic Acid Modified Polyethylene Glycol Functionalized Hydroxyapatite Nanoparticles. Powder Technol. 2013. 235: 437. https://doi.org/10.1016/j.powtec.2012.11.003

30. Cawthray J.F., Creagh A.L., Haynes C.A., Orvig C. Ion Exchange in Hydroxyapatite with Lanthanides. Inorg. Chem. 2015. 54(4): 1440. https://doi.org/10.1021/ic502425e

31. Li L., Liu Y., Tao J., Zhang M., Pan H., Xu X., Tang R. Surface Modification of Hydroxyapatite Nanocrystallite by a Small Amount of Terbium Provides a Biocompatible Fluorescent Probe. J. Phys. Chem. C. 2008. 112(32): 12219. https://doi.org/10.1021/jp8026463

32. Huang S., Zhu J., Zhou K. Synthesis and Luminescence Properties of Tb3+-Doped Hydroxyapatites. Adv. Mater. Res. 2012. 399-401: 1582. https://doi.org/10.4028/www.scientific.net/AMR.399-401.1582

33. Yin H., Li Y., Bai J., Ma M., Liu J. Effect of Calcinations Temperature on the Luminescence Intensity and Fluorescent Lifetime of Tb3+-doped Hydroxyapatite (Tb-HA) Nanocrystallines. J. Materiomics. 2017. 3(2): 144. https://doi.org/10.1016/j.jmat.2016.11.004

34. Ou X., Qin X., Huang B., Zan J., Wu Q., Hong Z., Xie L., Bian H., Yi Z., Chen X., Wu Y., Song X., Li J., Chen Q., Yang H., Liu X. High-resolution X-ray Luminescence Extension Imaging. Nature. 2021. 590(7846): 410. https://doi.org/10.1038/s41586-021-03251-6

35. Xu Z., Li Y., Liu Z., Wang D. UV and X-ray Excited Luminescence of Tb3+-doped ZnGa2O4 Phosphors. J. Alloys Compd. 2005. 391(1-2): 202. https://doi.org/10.1016/j.jallcom.2004.08.088

36. Ciobanu C.S., Iconaru S.L., Massuyeau F., Constantin L.V., Costescu A., Predoi D. Synthesis, Structure, and Luminescent Properties of Europium-Doped Hydroxyapatite Nanocrystalline Powders. J. Nanomater. 2012. 212: 942801. https://doi.org/10.1155/2012/942801

37. Wei Y., He Y., Li X., Chen H., Deng X. Cellular Uptake and Delivery-Dependent Effects of Tb3+-Doped Hydroxyapatite Nanorods. Molecules. 2017. 22(7): 1043. https://doi.org/10.3390/molecules22071043

38. Paduraru A.V., Oprea O., Musuc A.M., Vasile B.S., Iordache F., Andronescu E. Influence of Terbium Ions and Their Concentration on the Photoluminescence Properties of Hydroxyapatite for Biomedical Applications. Nanomaterials. 2021. 11(9): 2442. https://doi.org/10.3390/nano11092442

39. Gómez-Morales J., Fernández-Penas R., Acebedo-Martínez F.J., Romero-Castillo I., Verdugo-Escamilla C., Choquesillo-Lazarte D., Esposti L.D., Jiménez-Martínez Y., Fernández-Sánchez J.F., Iafisco M., Boulaiz H. Luminescent Citrate-Functionalized Terbium-Substituted Carbonated Apatite Nanomaterials: Structural Aspects, Sensitized Luminescence, Cytocompatibility, and Cell Uptake Imaging. Nanomaterials. 2022. 12(8): 1257. https://doi.org/10.3390/nano12081257

40. Daryan S. H., Khavandi A., Javadpour, J. Surface Engineered Hollow Hydroxyapatite Microspheres: Hydrothermal Synthesis and Growth Mechanisms. Solid State Sci. 2020. 106: 106301. https://doi.org/10.1016/j.solidstatesciences.2020.106301

41. Shang H.-B., Chen F., Wu J., Qi C., Lu B.-Q., Chen X., Zhu Y.-J. Multifunctional Biodegradable Terbium-doped Calcium Phosphate Nanoparticles: Facile Preparation, pH-sensitive Drug Release and In Vitro Bioimaging. RSC Adv., 2014. 4(95): 53122. https://doi.org/10.1039/C4RA09902H

42. Simon A.T., Dutta D., Chattopadhyay A., Ghosh S. S. Copper Nanocluster-Doped Luminescent Hydroxyapatite Nanoparticles for Antibacterial and Antibiofilm Applications. ACS Omega. 2019. 4(3): 4697. https://doi.org/10.1021/acsomega.8b03076

43. De Lama-Odría M.d.C., Valle L.J.d., Puiggalí J. Lanthanides-Substituted Hydroxyapatite for Biomedical Applications. Int. J. Mol. Sci. 2023. 24(4): 3446. https://doi.org/10.3390/ijms24043446

44. Gu M., Li W., Jiang L., Li X. Recent Progress of Rare Earth Doped Hydroxyapatite Nanoparticles: Luminescence Properties, Synthesis and Biomedical Applications. Acta Biomater. 2022. 148: 22. https://doi.org/10.1016/j.actbio.2022.06.006

45. Ignjatović N.L., Mančić L., Vuković M., Stojanović Z., Nikolić M.G., Škapin S., Jovanović S., Veselinović L., Uskoković V., Lazić S., Marković S., Lazarević M.M., Uskoković D.P. Rare-earth (Gd3+, Yb3+/Tm3+, Eu3+) Co-doped Hydroxyapatite as Magnetic, Up-conversion and Down-conversion Materials for Multimodal Imaging. Sci. Rep. 2019. 9(1): 16305. https://doi.org/10.1038/s41598-019-52885-0

46. Kusyak A.P., Petranovska A.L., Turanska S.P., Oranska O.I., Shuba Ya.M., Kravchuk D.I., Kravchuk L.I., Nazarenko V.G., Kravchuk R.M., Dubok V.A., Chornyi V.S., Bur'yanov O.A., Sobolevs'kyy Yu.L., Gorbyk P.P. Synthesis, Properties and Application Possibilities of X-ray Luminescent Nanocrystalline Lanthanum Phosphate. Chemistry, Physics and Technology of Surface. 2022. 13(4): 425.

47. Kusyak A.P., Petranovska A.L., Oranska O.I., Turanska S.P., Shuba Ya.M., Kravchuk D.I., Kravchuk L.I., Sotkis G.V., Nazarenko V.G., Kravchuk R.M., Dubok V.A., Bur'yanov O.A., Chornyi V.S., Sobolevs'kyy Yu.L., Gorbyk P.P. X-ray Luminescent Nanostructures Based on Lanthanum Fluoride and Phosphate for Optopharmacology and Photodynamic Therapy of Tumor Diseases. Poverhnia. 2023. 15(30): 268. [in Ukrainian].

48. Kusyak A., Petranovska A., Shchehlov O., Kravchuk R., Shuba Ya., Gorbyk P. X-ray Luminescent Nanocomposite LaF3:Tb/Citr@[Ru(bpy)2(nic)2]2+ as a Model Targeted Delivery System for Photopharmacology and Photodynamic Therapy. Hybrid Advances. 2024. 5: 100154. https://doi.org/10.1016/j.hybadv.2024.100154

49. Lu Y.H., Xiao X.F., Zheng X. Wu S.S., Liu R.F. Hydrothermal Synthesis and Characterization of Tb3+ Doped Hydroxyapatite. Adv. Mater. Res. 2012. 391: 709. https://doi.org/10.4028/www.scientific.net/AMR.391-392.709

50. Bhattacharjee S. DLS and Zeta Potential - Why They Are and What They Are Not? J. Control. Release. 2016. 235(2016): 337. https://doi.org/10.1016/j.jconrel.2016.06.017

51. Han Y., Wang X., Dai H., Li S. Nanosize and Surface Charge Effects of Hydroxyapatite Nanoparticles on Red Blood Cell Suspensions. ACS Appl. Mater. Interfaces. 2012. 4(9): 4616. https://doi.org/10.1021/am300992x

52. Chen L., Mccrate J.M., Lee J.C-M., Li H. The Role of Surface Charge on the Uptake and Biocompatibility of Hydroxyapatite Nanoparticles with Osteoblast Cells. Nanotechnology. 2011. 22(10) 105708. https://doi.org/10.1088/0957-4484/22/10/105708

53. Turon P., Del Valle L.J., Alemán C., Puiggali J. Biodegradable and Biocompatible Systems Based on Hydroxyapatite Nanoparticles. Appl. Sci. 2017. 7(1): 60. https://doi.org/10.3390/app7010060

54. Wang C., Jeong K.-J., Kim J., Kang S.W., Kang J., Han I.H., Lee I.-W., Oh S.-J., Lee J. Emission-tunable Probes Using Terbium(III)-doped Self-activated Luminescent Hydroxyapatite for In Vitro. J. Colloid Interface Sci. 2021. 581(A): 21. https://doi.org/10.1016/j.jcis.2020.07.083

55. Yang C., Yang P., Wang W., Zhang M., Lin J. Solvothermal Synthesis and Characterization of Ln (Eu3+, Tb3+) Doped Hydroxyapatite. J. Colloid Interface Sci. 2008. 328(1): 203. https://doi.org/10.1016/j.jcis.2008.09.010

56. Venkatasubbu G.D., Ramasamy S., Ramakrishnan V., Kumar J. Nanocrystalline Hydroxyapatite and Zinc-doped Hydroxyapatite as Carrier Material for Controlled Delivery of Ciprofloxacin. 3 Biotech. 2011. 1(3): 173. https://doi.org/10.1007/s13205-011-0021-9

57. Koort J.K., Mäkinen T.J., Suokas E., Veiranto M., Jalava J., Törmälä P., Aro H.T. Sustained Release of Ciprofloxacin from an Osteoconductive Poly(DL)-lactide Implant. Acta Orthop. 2008. 79(2): 295. https://doi.org/10.1080/17453670710015111

58. Chaussemier M., Pourmohtasham E., Gelus D., Pécoul N., Perrot H., Lédion J., Cheap-Charpentier H., Horner O. State of Art of Natural Inhibitors of Calcium Carbonate Scaling. A Review Article. Desalination. 2015. 356: 47. https://doi.org/10.1016/j.desal.2014.10.014

59. Li J., Liu Y., Gao Y., Zhong L., Zou Q., Lai X. Preparation and Properties of Calcium Citrate Nanosheets for Bone Graft Substitute. Bioengineered. 2016. 7(5): 376. https://doi.org/10.1080/21655979.2016.1226656

60. Kolmas J., Marek D., Kolodziejski W. Near-Infrared (NIR) Spectroscopy of Synthetic Hydroxyapatites and Human Dental Tissues. Appl. Spectrosc. 2015. 69(8): 902. https://doi.org/10.1366/14-07720

61. Grabska J., Ishigaki M., Beć K.B., Wojcik M.J., Ozaki Y. Correlations between Structure and Near-Infrared Spectra of Saturated and Unsaturated Carboxylic Acids. Insight From Anharmonic Density Functional Theory Calculations. J. Phys. Chem. A. 2017. 121(18): 3437. https://doi.org/10.1021/acs.jpca.7b02053

62. Barbooti M.M., Al-Sammerrai D.A. Thermal Decomposition of Citric Acid. Termochim. Acta. 1986. 98: 119. https://doi.org/10.1016/0040-6031(86)87081-2

63. Mansour S.A.A. Thermal Decomposition of Calcium Citrate Tetrahydrate. Thermochim. Acta. 1994. 233: 243. https://doi.org/10.1016/0040-6031(94)85118-2

64. Sing K.S.W. Reporting Physisorption Data for Gas/solid Systems with Special Reference to the Determination of Surface Area and Aorosity (Recommendations 1984). Pure Appl. Chem. 1985. 57(4): 603. https://doi.org/10.1351/pac198557040603

65. Xia X., Chen J., Shen J., Huang D., Duan P., Zou G. Synthesis of Hollow Structural Hydroxyapatite with Different Morphologies Using Calcium Carbonate as Hard Template. Adv. Powder Technol. 2018. 29(7): 1562. https://doi.org/10.1016/j.apt.2018.03.021

66. Rhati H., Laghzizil A., Saoiabi A., El Asri S., Lahlil K., Gacoin T. Surface Properties of Porous Hydroxyapatite Derived from Natural Phosphate. Mater. Chem. Phys. 2012. 136(2-3): 1022. https://doi.org/10.1016/j.matchemphys.2012.08.042

67. Zhang Y., Shao D., Yan J., Jia X., Li Y., Yu P., Zhang T. The Pore Size Distribution and its Relationship with Shale Gas Capacity in Organic-rich Mudstone of Wufeng-Longmaxi Formations, Sichuan Basin, China. J. Nat. Gas Geosci. 2016. 1(3): 213. https://doi.org/10.1016/j.jnggs.2016.08.002

68. Chen Z., Liu Y., Mao L., Gong L., Sun W., Feng L. Effect of Cation Doping on the Structure of Hydroxyapatite and the Mechanism of Defluoridation. Ceram. Int. 2018. 44(6): 6002. https://doi.org/10.1016/j.ceramint.2017.12.191

69. Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015. 87(9-10): 1051. https://doi.org/10.1515/pac-2014-1117




DOI: https://doi.org/10.15407/hftp16.01.115

Copyright (©) 2025 O. D. Shchehlov, A. P. Kusyak, O. I. Oranska, R. M. Kravchuk, A. L. Petranovska, Ya. M. Shuba, P. P. Gorbyk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.