Chemistry, Physics and Technology of Surface, 2025, 16 (1), 149-164.

Diffusive transport along a structured surface: ratchet effect stability when changing the potential profile type



DOI: https://doi.org/10.15407/hftp16.01.149

T. Ye. Korochkova, O. V. Mashira, T. Yu. Gromovoy, A. D. Terets

Abstract


The phenomenon of the ratchet effect provides the motion a large number of molecular machines, existing in nature and artificially created nanomechanisms, capable to initiate directed diffusion movement along periodic structures. Two key factors, necessary for the ratchet effect occurrence, are the presence of asymmetry in the system and the organization of the non-equilibrium fluctuations process. Asymmetry can be created directly by the stationary potential form, in the field of which unidirectional motion is organized. Double-sine (smooth) and sawtooth (piecewise-linear) potential profile dependences are encountered most frequently when designing models. The source of such dependence can be a chain of collinearly located dipoles on the surface of a solid. The purpose of this work was to study the influence on the ratchet effect of changing the model potential class from smooth to piecewise linear. For this purpose, two methods of approximation of the double sinusoidal potential by a sawtooth were considered. The first, simple, consists in connecting the extremum points with straight-line segments, preserving the height of the potential barrier and the coordinates of the extrema. The second, the least squares method (LSM), reproduces the slopes of the smooth potential as closely as possible. A model of a stochastic Brownian motor with small fluctuations of the potential energy by a harmonic signal was chosen for the comparative analysis. This model has no limitations in the ranges of the environment temperature and fluctuation frequency parameters, so the ratchet effect can be studied in all operation modes of the motor. It is shown that at sufficiently high temperatures for any asymmetry of potentials, approximation by the simple method gives better results, and at high frequencies – the LSM method. An algorithm for determining the best approximation method in the ranges of parameters that generate the largest flux values is proposed. It has been shown that for single-well double-sine potentials the approximate LSM-potential gives identical results of temperature-frequency dependences. Contour graphs of relative flux values were plotted, demonstrating parameters regions of the greatest identity (stability) of the ratchet effect and the region of the greatest difference.


Keywords


dipole chain; orientation-structured system on a surface; controlled diffusion transport; near-surface mass transfer; Brownian motors; ratchet effect; potential fluctuations

References


1. Fornes J.A. Principles of Brownian and Molecular Motors. V. 21. (Springer Nature: Springer Series in Biophysics, 2021). https://doi.org/10.1007/978-3-030-64957-9

2. Hänggi P., Marchesoni F. Artificial Brownian motors: Controlling transport on the nanoscale. Rev. Mod. Phys. 2009. 81: 387. https://doi.org/10.1103/RevModPhys.81.387

3. Reimann P. Brownian Motors: Noisy Transport far from Equilibrium. Phys. Rep. 2002. 361(2-4): 57. https://doi.org/10.1016/S0370-1573(01)00081-3

4. Cubero D., Renzoni F. Brownian Ratchets: From Statistical Physics to Bio and Nano-motors. (Cambridge University Press., 2016). https://doi.org/10.1017/CBO9781107478206

5. Credi A., Balzani V. Molecular machines. (1088press, Italy, 2020).

6. Okada Y., Hirokawa N. A Processive Single-Headed Motor: Kinesin Superfamily Protein KIF1A. Science. 1999. 283(5405): 1152. https://doi.org/10.1126/science.283.5405.1152

7. Howard J. Mechanics of Motor Proteins and the Cytoskeleton. Part II. (Sinauer Associates, Sunderland, Massachusetts, 2001).

8. Finer J.T., Simmons R.M., Spudich J.A. Single myosin molecule mechanics - piconewton forces and nanometre steps. Nature. 1994. 368(6467): 113. https://doi.org/10.1038/368113a0

9. Gorre-Talini L., Spatz J. P., Silberzan P. Dielectroscopic ratchets. Chaos. 1998. 8: 650. https://doi.org/10.1063/1.166347

10. Rousselet J., Salome L., Ajdari A. Directional motion of brownian particles induced by a periodic asymmetric potential. Nature. 1994. 370(6489): 446. https://doi.org/10.1038/370446a0

11. Lipowsky R., Klumpp S. 'Life is Motion' - Multiscale Motility of Molecular Motor. Physica A. 2005. 352(1): 53. https://doi.org/10.1016/j.physa.2004.12.034

12. Kedem O., Lau B., Weiss E.A. Mechanisms of Symmetry Breaking in a Multidimensional Flashing Particle Rattchet. ACS Nano Letters. 2017. 11(7): 7148. https://doi.org/10.1021/acsnano.7b02995

13. Astumian D., Hänggi P. Brownian Motors. Phys. Today. 2002. 55(11): 33. https://doi.org/10.1063/1.1535005

14. Pamme N. Continuous flux separations in microfluidic devices. Lab. Chip. 2007. 7(12): 1644. https://doi.org/10.1039/b712784g

15. Savel'ev S., Misko V., Marchesoni F., Nori F. Separating particles according to their physical properties: Transverse drift of underdamped and overdamped interacting particles diffusing through two-dimensional ratchets. Phys. Rev. B. 2005. 71: 214303. https://doi.org/10.1103/PhysRevB.71.214303

16. Lund K., Manzo A.J., Dabby N., Michelotti N., Johnson-Buck A., Nangreave J., Taylor S., Pei R., Stojanovic M.N., Walter N.G., Winfree E., Yan H. Molecular robots guided by prescriptive landscapes. Nature. 2010. 465: 206. https://doi.org/10.1038/nature09012

17. Wickham S.F.J., Endo M., Katsuda Y., Hidaka K., Bath J., Sugiyama H., Turberfield A.J. Direct observation of stepwise motion of a synthetic molecular transporter. Nat. Nanotechnol. 2011. 6: 166. https://doi.org/10.1038/nnano.2010.284

18. Cha T.G., Pan J., Chen H., Salgado J., Li X., Mao Ch., Choi J.H. A synthetic DNA motor that transports nanoparticles along carbon nanotubes. Nat. Nanotechnol. 2013. 9(1): 39. https://doi.org/10.1038/nnano.2013.257

19. Krogh A., Larsson B., von Heijne G., Sonnhammer E. Predicting transmembrane protein topology with a hidden Markov model. Application to complete genomes. J. Mol. Biol. 2001. 305(3): 567. https://doi.org/10.1006/jmbi.2000.4315

20. Overington J.P., Al-Lazikani B., Hopkins A.L. How many drug targets are there? Nat. Rev. Drug Discovery. 2006. 5: 993. https://doi.org/10.1038/nrd2199

21. Jiang X., O'Brien Z.J., Yang S., Lai L.H., Buenaflor J., Tan C., Khan S., Houk K.N., Garcia-Garibay M.A. Crystal fluidity reflected by fast rotational motion at the core, branches, and peripheral aromatic groups of a dendrimeric molecular rotor. J. Am. Chem. Soc. 2016. 138(13): 4650. https://doi.org/10.1021/jacs.6b01398

22. Lien Ch., Seck Ch.M., Lin Y.-W., Nguyen J.H.V., Tabor D.A., Odom B.C. Broadband optical cooling of molecular rotors from room temperature to the ground state. Nat. Commun. 2014. 5: 4783. https://doi.org/10.1038/ncomms5783

23. Cherioux F., Galangau O., Palmino F., Repenne G. Controlled directional motions of molecular vehicles, rotors, and motors: from metallic to silicon surfaces, a strategy to operate at higher temperatures. Chem. Phys. Chem. 2016. 17(12): 1742. https://doi.org/10.1002/cphc.201500904

24. Khodorkovsky Y., Steinitz U., Hartmann J.-M., Averbukh I.Sh. Collisional dynamics in a gas of molecular super-rotors. Nat. Commun. 2015. 6: 7791. https://doi.org/10.1038/ncomms8791

25. Korochkova T.Ye., Rozenbaum V.M. Drift of a Brownian particle due to the orientational structuring of the adsorbate. Reports of the National Academy of Sciences of Ukraine. 2004. 8: 93. [in Russian].

26. Rosenbaum V.M. Brownian motion and surface diffusion. In: Physics and chemistry of the surface. Book 1. Physics of the surface (in two volumes). V. 2 (Part VI, Chapter 23). (Kyiv: Institute of Surface Chemistry. A.A. Chuiko National Academy of Sciences of Ukraine, Ltd. Interservis, 2015). [in Russian].

27. Tsyomik O.Y., Chernova A.A., Rozenbaum V.M. Near-surface Brownian motors governed by an alternating electric field. Reports of the National Academy of Sciences of Ukraine. 2009. 12: 83. [in Russian].

28. Bartussek R., Hänggi P., Kissner J.G. Periodically rocked thermal ratchets. Europhys. Lett. 1994. 28(7): 459. https://doi.org/10.1209/0295-5075/28/7/001

29. Korochkova T.Ye. Pulsating brownian motor with smooth modeling potentials in the framework of small fluctuation approximation. Him. Fiz. Tehnol. Poverhni. 2024. 15(2): 159. [in Ukrainian]. https://doi.org/10.15407/hftp15.02.159

30. Doering C.R., Dontcheva L.A., Klosek M.M. Constructive role of noise: Fast fluctuation asymptotics of transport in stochastic ratchets. Chaos. 1998. 8(3): 643. https://doi.org/10.1063/1.166346

31. Reimann P. Stochastic Processes in Physics, Chemistry, and Biology. (Berlin: Springer-Verlag, 2000).

32. Vysotskaya U.A., Shapochkina I.V., Korochkova T.Ye., Rozenbaum V.M. Stochastic Brownian motors with small potential energy fluctuations. Chemistry, Physics and Technology of Surface. 2017. 8(3): 299. [in Russian]. https://doi.org/10.15407/hftp08.03.299

33. Risken H. The Fokker-Plank Equation. Methods of Solution and Applications. (Springer, Berlin, 1984). https://doi.org/10.1007/978-3-642-96807-5

34. Gardiner C.W. Handbook of stochastic Methods for physics, chemistry and the Natural sciences. 2nd edition, (Springer-Verlag Berlin, 1985). https://doi.org/10.1007/978-3-662-02452-2

35. Korochkova T.Ye. Piecewise-linear approximation of the potential relief of a brownian motors. Surface. 2017. 9(24): 3. [in Russian]. https://doi.org/10.15407/Surface.2017.09.003

36. Roth J.S., Zhang Y., Bao P., Cheetham M.R., Han X., Evans S.D. Optimization of Brownian ratchets for the manipulation of charged components within supported lipid bilayers. Appl. Phys. Lett. 2015. 106(18): 183703. https://doi.org/10.1063/1.4919801

37. Lau B., Kedem O., Schwabacher J., Kwasnieskiab D., Weiss E.A. An introduction to ratchets in chemistry and biology. Mater. Horiz. 2017. 4(3): 310. https://doi.org/10.1039/C7MH00062F

38. Schadschneider A., Chowdhury D., Nishinari K. Stochastic Transport in Complex Systems: From Molecules to Vehicles. 1st Edition. (Amsterdam: Elsevier Science, 2010).




DOI: https://doi.org/10.15407/hftp16.01.149

Copyright (©) 2025

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.