Chemistry, Physics and Technology of Surface, 2011, 2 (2), 175-181.

Physico-Chemical and Electrochemical Properties of Nanosized Li[Li0.033Mn1.967]O4



A. V. Potapenko, S. I. Chernukhin, I. V. Romanova, S. А. Kirillov

Abstract


By means of the thermal decomposition of a citrate precursor, lithium-manganese spinel Li[Li0.033Mn1.967]O4 has been obtained. The material has the crystallite size of <30 nm, specific surface area of about 10 m2/g, and the pore diameter of about 10–30 Å; the crystallites are joined into aggregates of 200–400 nm size. Theoretical specific capacity of Li[Li0.033Mn1.967]O4 calculated within approximation of the absence of vacancies equals to 110 mAh/g and the experimental one – to 105–110 mAh/g. Electrochemical studies on the samples fired at 700°С as cathodes of lithium ion batteries evidence the absence of discharge capacity fading within 100 cycles and the capability to discharge electrodes with great currents. In particular, at the current density of 1480 mА/g (11,1 С) the reversible capacity equals to more than the half of the theoretical capacity of the material.

Full Text:

PDF (Русский)

References


Thackeray M.M., David W.I.F., Bruce P.G. Lithium insertion into manganese spinels // Mater. Res. Bull. – 1983. –V. 18, N 4. – P. 461–472.

Келлерман Д.Г., Горшков B.C. Структура, свойства и применение литий-марганцевых шпинелей // Электрохимия. – 2000. – Т. 37, № 12. – С. 1413–1423.

Махонина Е.В., Первов В.С., Дубасова В.С. Оксидные материалы положительного электрода литий-ионных аккумуляторов // Усп. химии. – 2004. – Т. 73, № 10. – С. 1075–1083.

Whittingham M.S. Lithium batteries and cathode materials // Chem. Rev. – 2004. – V. 104, N 10. – P. 4271–4301.

Thackeray M.M., Johnson P.J., de Piciotto L.A. et al. Electrochemical extraction of lithium from LiMn2O4 // Mater. Res. Bull. – 1984. – V. 19, N 2. – P. 179–184.

Rossouw M.H., de Kock A., de Piciotto L.A. et al. Structural aspects of lithium-manganese-oxide electrodes for rechargeable lithium // Mater. Res. Bull. – 1990. – V. 25, N 2. – P. 173–182.

Ohzuku T., Kitagawa M., Hirai T. Electrochemistry of manganese dioxide in lithium nonaqueous cell // J. Electrochem. Soc. – 1990. – V. 137, N 3. – P. 769–775.

Yamada A. Lattice instability in Li(LixMn2-x)O4 // J. Solid State Chem. – 1996. – V. 122, N 1. – P. 160–165.

Tarascon J.M., McKinnon W.R., Coowar F. et al. Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn2O4 // J. Electrochem. Soc. – 1994. – V. 141, N 6. – P. 1421–1431.

Tarascon J.M., Wang E., Shokoohi F.K. et al. The spinel phase of LiMn2O4 as a cathode in secondary lithium cells // J. Electrochem. Soc. – 1991. – V. 138, N 10. – P. 2859–2864.

Xia Y., Yoshio M. An investigation of lithium ion insertion into spinel sfructure Li-Mn-O compounds // J. Electrochem. Soc. – 1996. – V. 143, N 3. – P. 825–833.

Aricò A.S., Bruce P., Scrosati B. et al. Nanostructured materials for advanced energy conversion and storage devices // Nat. Mater. – 2005. – V. 4, N 5. – P. 366–377.

Nikkan N., Munichandraiah N. The effect of particle size on performance of cathode materials of Li–ion batteries // J. Indian Inst. Sci. – 2009. – V. 89, N 4. – P. 381–392.

Park O.K., Cho Y., Lee S. et al. Who will drive electric vehicles, olivine or spinel? // Energy Environ. Sci. – 2011. – V. 4, N 5. – P. 1621–1633.

Liu W., Farrington C.C., Chaput F. Synthesis and electrochemical studies of spinel phase LiMn2O4 cathode materials prepared by the Pechini process // J. Electrochem. Soc. – 1996. – V. 143, N 3. – P. 879–884.

Hwang B.J., Santhanam R., Liu D.G. Characterization of nanoparticles of LiMn2O4 synthesized by citric acid sol-gel method // J. Power Sources. – 2001. – V. 97–98. – P. 443–446.

Hwang B.J., Santhanam R., Liu D.G. Effect of various synthetic parameters on purity of LiMn2O4 spinel synthesized by sol-gel method at low temperature // J. Power Sources. – 2001. – V. 101, N 1. – P. 86–89.

Hwang B.J., Santhanam R., Hu S.G. Synthesis and characterization of multidoped lithium manganese oxide spinel, Li1,02Co0,1Ni0,1Mn1,8O4 for rechargeable lithium batteries // J. Power Sources. – 2002. – V. 108, N 1–2. – P. 250–255.

Wang X., Chen X., Gao L. et al. Citric acid-assisted sol-gel synthesis of nanocrystalline LiMn2O4 spinel as cathode material // J. Cryst. Growth. – 2003. –V.2 56, N 1–2. – P. 123–127.

Yi T., Dai C., Gao K., Hu X. Effect of synthetic parameters on structure and electrochemical performance of spinel lithium manganese oxide by citric acid-assisted sol-gel method, // J. Alloys Compd. –2006. –V. 425, N 1–2. – P. 343–347.

Фарбун И.А., Романова И.В., Териковская Т.Е. и др. Комплексообразование при синтезе оксида цинка из цитратных растворов // Журн. прикл. химии. – 2007. – Т. 80, № 11. – С. 1773–1778.

Романова И.В., Фарбун И.А., Хайнаков С.А. и др. Исследование каталитических свойств материалов на основе оксидов переходных металлов и церия // Доп. НАН України. – 2008. – № 10. – С. 153–158.

Фарбун И.А., Романова И.В., Хайнаков С.А., Кириллов С.А. Свойства наноразмерных материалов на основе оксидов марганца и церия, полученных из цитратных растворов // Поверхность. – 2010. – № 2(17). – С. 197–204.

Tobon-Zapata G.E., Ferrer E.G., Etcheverry S.B., Baran E.J. Thermal behaviour of pharmacologically active lithium compounds // J. Therm. Anal. Calorim. – 2000. – V. 61, N 1. – P. 29–35.

Kirillov S.A. Surface area and pore volume of a system of particles as a function of their size and packing // Microporous Mesoporous Mater. – 2009. – V. 122, N 1–3. – P. 234–239.




Copyright (©) 2011 A. V. Potapenko, S. I. Chernukhin, I. V. Romanova, S. A. Kirillov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.