Chemistry, Physics and Technology of Surface, 2014, 5 (3), 256-274.

Structure and properties of primary surface formations on the Si(001) face: quantum chemical researches



O. I. Tkachuk, M. I. Terebinska, V. V. Lobanov

Abstract


A comparative analysis has been performed on the applicability of quantum chemical methods of different complicability to describe the structure and properties of the clean Si(001) surface, and of that containing a few atoms of germanium. It has been found that the density functional theory within the cluster approximation involving the exchange-correlation functional B3LYP and 6-31 G** basis set is the most rational from the point of view of reproducibility of experimentally found results and considering the moderate cost of computing time and computer resources. It is just this approximation of quantum chemical calculations that properly reproduces the lengths of >Si–Si<, >Si–Ge<, and >Ge–Ge< surface dimers bonds as well as the experimentally justified fact of their buckling.

Keywords


Si (001) face; Ge atoms on surface; density functional theory; cluster approximation

Full Text:

PDF (Русский)

References


1. Пчеляков О.П., Болховитянов Ю.Б., Двуреченский А.В. и др. Кремний-германиевые наноструктуры с квантовыми точками: механизмы образования и энергетические свойства.ФТП. – 2000. – Т. 34, № 11. – Р. 1281–1299.

2. Brunner K. Si/Ge nanostructures. Rep. Prog. Phys. – 2002. – V. 65. – P. 27–72.

3. Бехштедт Ф., Эндерлайн Р. Поверхности и границы раздела полупроводников. – Москва: Мир, 1990. – 484 с.

4. Kinoshita T., Kono S., Sagawa T. Angle-resolved photoelectron-spectroscopy study of the Si(111) ×-Sn surface: Comparison with Si(111) ×-Al, -Ga, and -In surfaces.Phys. Rev. B. – 1986. – V. 34. – P. 3011–3014.

5. Northrup J.E. Si(111) ×-Al: an adatom-induced reconstruction. Phys. Rev. Lett. – 1984. – V. 53. – P. 683–690.

6. Srivastava G.P., Weaire D. The theory of the cohesive energies of solids. Adv. Phys. – 1987. – V. 36, N 4. – P. 463–517.

7. Chiarotti G., Nannarote S., Postore R., Chiarotti P. Optical absorption of surface states in ultrahigh vacuum cleaved (111) surfaces of Ge and Si. Phys. Rev. – 1971. – V. B4. – P. 3398.

8. Jung Y., Akinaga Y., Jordan K.D., Gordon M.S. An ab initio study of the structure of two-, three- and five-dimer silicon clusters: An approach to the Si(100) surface. Theor. Chem. Acc. – 2003. – V. 109. – P. 268–273.

9. Schmidt M.W., Gordon M.S. The construction and interpretation of MCSCF wavefunctions. Annu. Rev. Phys. Chem. – 1998. – V. 4. – P. 233–266.

10 .Pople J.A., Krisman R., Schleger H.B., Binkley J.S. Electron correlation theories to the study of simple reaction potential surfaces. Int. J. Quantum Chem. – 1978. – V. 14, N 5. – P. 545–560.

11. Yong D.C. Computation Chemistry. A Practical Guide for Applying Techniques to Real-world Problems. – N.Y.: Wiley Interscience, 2001. – 381 p.

12. Parr R.G., Yang W. Density-functional Theory of Atoms and Molecules.Oxford: Oxford Univ. Press – 1989. – 333 p.

13. Jones R.O., Gunnarsson O. The density functional formalism, its applications and prospects. Rev. Mod. Phys. – 1989. – V. 61, N 3. – P. 689–746.

14. Becke A.D., Burke K. Correlation energy of an inhomogeneous electron gas: A coordinate-space model. J. Chem. Phys. – 1988. – V. 88, N 2. – P. 1053–1062.

15. Becke A.D. Density-functional thermoche-mistry. 3. The role of exact exchange. J. Chem. Phys. – 1993. – V. 98. – P. 5648–5652.

16. Redondo A, Goddard W.A. III Electronic correlation and the Si(100) surface: Buckling versus nonbuckling. J. Vac. Sci. Technol. – 1982. – V. 21. – P. 344–650.

17. Paulus B. Calculations for the reconstruction of the Si(100) surface. Surf. Sci. – 1998. – V. 408. – P. 195–202.

18. Shoemaker J., Burggraf J.W., Gordon M.S. An ab initio cluster study of the structure of the Si(001) surface. J. Chem. Phys. – 2000. – V. 112. – P. 2994–3005.

19. Gordon M.S., Shoemaker J.R., Burggraf L.W. Response to ‘‘Comment on ‘An ab initio cluster study of the structure of the Si(001) surface’ ’’. J. Chem. Phys. – 2000. – V. 113. – P. 9355–9356.

20. Hess J.S., Doren D.J. Comment on ‘‘An ab initio cluster study of the structure of the Si(001) surface’’. J. Chem. Phys. – 2000. – V. 113. – P. 9353–9354.

21. Konecny R., Doren D.J. Adsorption of water on Si(100)-(2×1): A study with density functional theory. J. Chem. Phys. – 1997. – V. 106. – P. 2426–2435.

22. Yang C., Kang H.C. Geometry of dimer reconstruction on the C(100), Si(100), and Ge(100) surfaces. J. Chem. Phys. – 1999. – V. 110. – P. 11029–11037.

23. Penev E., Kratzer P., Scheffler M. Effect of the cluster size in modeling the H2 desorption and dissociative adsorption on Si(001). J. Chem. Phys. – 1999. – V. 110. – P. 3986–3994.

24. Yang C., Lee S.Y., Kang H.C. An embedded cluster study of dimer buckling on the Si(100) surface. J. Chem. Phys. – 1997. – V. 107. – P. 3295–3299.

25. Davidson E. R., Feller D. Basis set selection for molecular calculations. Chem. Rev. – 1986. – V. 86, N 4. – P. 681–696.

26. Hay P.J., Wadt W.R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. – 1985. – V. 82. – P. 270–283.

27. Wang Y., Shi M., Rabalais J. W. Structure of the Si{100} surface in the clean (2×1), (2×1)-H monohydride, (1×1)-H dihydride, and c(4×4)-H phases. Phys. Rev. – 1993. – B48. – P. 1678–1683.

28. Jung Y., Shao Y., Gordon M.S. et al. Are both symmetric and buckled dimers on Si(100) minima? Density functional and multireference perturbation theory calculations. J. Chem. Phys. – 2003. – V. 119. – P. 10917–10923.

29. Paz O., da Silva A.J.R., Saenz J.J., Artacho E. Electron correlation in the Si(001). Surf. Sci. – 2001. – V. 482–485. – P. 458–463.

30. Neugebauer J., Scheffeler M. Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers of Al(111). Phys. Rev. B. – 1992. – V. 46, N 24. – P. 16067–16080.

31. Artacho E., Yndura F. Proposal for symmetric dimers at the Si(100)-2×1 surface. Phys. Rev. Lett. – 1989. – V. 62. – P. 2491–2497.

32. Gay S.C.A., Srivastava G.P. Dimer length variation for different reconstructions of Si, Ge, and mixed Si-Ge dimers on Si(001) and Ge(001) substrates. Phys. Rev. – 1999. –V. B 60. – P. 1488–1492.

33. Perdew J.P., Zunger A. Self-interaction correction to density-functional approxima-tions for many-electron systems. Phys. Rev. B. – 1981. ­ V. 23. – P. 5048–5055.

34. Bachelet G.B., Hamann D.R., Schlu ̈ter M. Pseudopotentials that work: From H to Pu. Phys. Rev. B. – 1982. – V. 26. – P. 4199–4228.

35. Fritsch J., Pavone P. Ab initio calculation of the structure, electronic states, and the phonon dispersion of the Si(100) surface. Surf. Sci. – 1995. – V. 344 – P. 159–173.

36. Healy S.B., Filippi C., Kratzer P. et al. Role of electronic correlation in the Si(100) reconstruction: a quantum Monte Carlo study. Phys. Rev. Lett. – 2001. – V. 87. – P. 016105–01610.

37. Olson R.M., Gordon M.S. The structure of the Si9H12 cluster: A coupled cluster and multi-reference perturbation theory study. J. Chem. Phys. – 2006. – V. 124. – P. 081105–081111.

38. Jenkins S.J., Srivastava G.P. Theoretical evidence concerning mixed dimer growth on the Si(001)(2×1)–Ge surface. J. Phys.: Condens. Matter. – 1996. – V. 8. – P. 6641–6651.

39. People J.A., Gill P.M.W., Handy N.C. Spin-unrestricted character of Kohn-Sham orbitals for open-shell systems. Int. J. Quantum Chem. – 1995. – V. 4. – P. 303–305.

40. Wolkow R.A. Direct observation of an increase in buckled dimers on Si(001) at low temperature. Phys. Rev. Lett. – 1992. – V. 68. – P. 2636–2643.

41. Kondo Y., Amakusa T., Iwatsuki M., Tokumo H. Phase transition of the Si(001) surface below 100 K. Surf. Sci. – 2000. – V. 453. – P. L318–L322.

42. Lay G.Le, Cricenti A., Ottaviani C., et al. Evidence of asymmetric dimers down to 40 K at the clean Si(100) surface. Phys. Rev. B.– 2002. – V. 66. – P. 153317–153323.

43. Hata K., Yoshida S., Shigekawa H. p(2×2) Phase of buckled dimers of Si(100) observed on n-type substrates below 40 K by scanning tunneling microscopy. Phys. Rev. Lett. – 2002. – V. 89. – P. 2886104–2086112.

44. Mo Y-W, Savage D.E., Swartzentruber B.S., Lagally M.G. Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001). Phys. Rev. Lett. – 1990. – V. 65. – P. 1020–1025

45. Sasaki M., Abukawa T.A., Yeom H.W. et al. Auger electron diffraction study of the initial stage of Ge heteroepitaxy on Si(001). Appl. Surf. Sci. – 1994. – V. 82/83. – P. 387–393.

46. Patthey L., Bullock E.L., Abukawa T. et al. Mixed Ge-Si dimer growth at the Ge/Si(001)-( 2×1) surface. Phys. Rev. Lett. – 1995. – V. 75. – P. 2538–2542.

47. Cho J-H., Jeong S., Kang M-H. Final-state pseudopotential theory for the Ge 3d-core-level shifts on the Ge/Si(100)-(2×1) surface. Phys. Rev. B. – 1994. – V. 50. – P. 17139–17146.

48. Ceperley D.M., Alder B.I. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. – 1980. – V. 45. –P. 566–572.

49. Dabrowski J., Pehlke E., Scheffler M. Calculation of the surface stress anisotropy for the buckled Si(001)(1x2) and p(2x2) surfaces. Phys. Rev. B. – 1994. – V. 49. – P. 4790–4793.

50. Fontes E., Patel J.R., Comin F. Direct measurement of the asymmetric dimer buckling of Ge on Si(001). Phys. Rev. Lett. – 1993. – V.  70. –P. 2790–2795.

51. Fontes E., Patel J. R., Comin F. Bond-length of Ge dimmers at Si(001) – Reply. Phys. Rev. Lett. – 1994. – V. 72. – P. 1131.

52. Oyanagi H., Sakamoto K., Shioda R. et al. Ge overlayers on Si(001) studied by surface-extended X-ray-absorption fine structure. Phys. Rev. B. – 1995. – V. 52. – P. 5824–5531.

53. Niwa R. H. Theoretical study of Si–Ge mixed dimers on Si(001) surfaces. Surf. Sci. – 1998. – V. 418. – P. 55–63.

54. Ramstad A., Brocks G., Kelly J. P. Theoretical study of the Si(100) surface reconstruction. Phys. Rev. B. – 1995. – V. 51. – P. 14504–14510.

55. Lin D. S., Miller T., Chiang T. C. Dimer charge asymmetry determined by photo-emission from epitaxial Ge on Si(100)-(2×1). Phys. Rev. Lett. – 1991. – V. 67. – P. 2187–2193.

56. Кондратьев В.Н. Структура атомов и молекул. Москва: Физ.-мат. лит., 1959. – 524 с.

57. Chen X., Patthey L., Bullock E. L. et al. Atomic geometry of mixed Ge-Si dimers in the initial-stage growth of Ge on Si(001)2×1. Phys. Rev. B. – 1997. – V. 55. – P. 7319–7325.

58. Oviedo J.A. First principles study of sub-monolayer Ge on Si(001). Surf. Sci. – 2002. – V. 515. – P. 483–490.

59. Keöhler U., Jusko O., Mëuller B. et al. Layer-by-layer growth of germanium on Si(100): strain-induced morphology and the influence of surfactants. Ultramicroscopy. – 1992. – V. 42–44. – P. 832–837.

60. Tersoff J. Stress-induced layer-by-layer growth of Ge on Si(100). Phys. Rev. B. – 1991. – V. 43. – P. 9377–9784.

61. Tersoff J. Missing dimers and strain relief in Ge films on Si(100). Phys. Rev. B. – 1992. – V. 45. – P. 8834–8840.

62. Chen X., Wu F., Zhang Z., Lagally M. G. Vacancy-vacancy interaction on Ge-covered Si(001). Phys. Rev. Lett. – 1994. – V. 73. – P. 850–855.

63. Liu F., Lagally M. G. Interplay of stress, structure, and stoichiometry in Ge-covered Si(001). Phys. Rev. Lett. – 1996. – V. 76. – P. 3156–3162.

64. Voigtlëander B., Këastner M. Evolution of the strain relaxation in a Ge layer on Si(001) by reconstruction and intermixing. Phys. Rev. B. – 1999. – V. 60. – P. 8834–5121.

65. Patthey L., Bullock E. L., Abukawa T. et al. Mixed Ge-Si dimer growth at the Ge/Si(001)-(2×1) Surface. Phys. Rev. Lett. – 1995. – V. 75. – P. 2538–2545.

66. Cho J. H., Kang M. H. Atomic structure of the Ge/Si(100)(2×1) surface. Phys. Rev. B. – 1994. – V. 59. – P. 13670–13675.

67. Iwawaki F., Tomitori M., Nishikawa O. STM study of Ge overlayers on Si(001). Surf. Sci. 1992. – V. 266. – P. 285–288.




Copyright (©) 2014 O. I. Tkachuk, M. I. Terebinska, V. V. Lobanov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.