Phase transformations in nanocomposites based on fumed silica, alumina and rare earth metal oxides Ln2O3 (Ln = Nd, Gd)
DOI: https://doi.org/10.15407/hftp08.02.155
Abstract
Currently, fumed silica and alumina are generally known as adsorbents and supports for adsorbents and catalysts. At the same time, they, as nano-sized reagents, can be used to create modern materials containing silicates and aluminates of metals, in particular, rare-earth metals for the needs of optics, electronics and other applications. In this work, phase transformations and the structure of composites based on fumed silica, alumina and oxides of the lanthanum group Ln2O3 (Ln=Nd, Gd) as dependent on the ratio of fumed oxides and nature of Ln2O3 have been studied. X-ray diffraction and thermal analysis (DTA) methods were used. The samples were heated to 1000, 1200, 1400 °C corresponding to changes in the DTA curves on the derivatograms. It is shown that silicates of oxoapatite type Nd9.33Si6O26 and Gd9.34Si6O26 are formed in composites based on fumed silica and oxides of Ln2O3 at a temperature below 1400 °C. The phase of Nd9.33Si6O26 was found to be transitional during the formation of stable phases of Nd2Si2O7 and cristobalite at 1400 °C. It is suggested that no observation of Gd2Si2O7 is connected with lower reactivity of Gd2O3 compared with Nd2O3. In the composites based on Ln2O3 and both fumed oxides there are change in character of the interactions of the components near 1250 °C. First, formation of Nd9.33Si6O26, NdAlO3 and polymorphic transformation of Gd2O3 from cubic to hexagonal modification are observed. After 1250 °C interaction between fumed oxides occurs, which is accompanied by the formation of mullite and amorphous phase while maintaining various modifications of Gd2O3. In composites based on Ln2O3 and fumed alumina the formation of aluminates NdAlO3 and GdAlO3 occurs at 1000 and 1200 °C accordingly. Simultaneously with the formation of GdAlO3, the polymorphic transformation of Gd2O3 is observed up to 1400 °C. In the presence of both fumed oxides, it is limited to the formation of mullitic phase. Thus, apparently, Gd2O3 exhibits less reactivity with respect to fumed alumina and silica compared with Nd2O3.
Keywords
References
1. Borysenko M.V., Bogatyrev V.M., Gun'ko V.M., Sulym I.Ya., Gayeva M.V., Oranska O.I. Scientific principles of synthesis of nanostructured glass-ceramic systems with sol-gel method using modified fumed silicas. Priorities of scientific cooperation of GFFR and BRFFR. (Kyiv: GIA, 2007). [In Ukrainian].
2. Gun'ko V.M., Zarko V.I., Turov V.V., Oranska O.I., Goncharuk E.V., Nychiporuk Y.M., Pakhlov E.M., Yurchenko G.R., Leboda R., Skubiszewska- Zięba J., Osovskii V.D., Ptushinskii Y.G., Derzhypolskyi A.G., Melenevsky O.A., Blitz J.P. Morphological and structural features of individual and composite nanooxides with alumina, silica, and titania in powders and aqueous suspensions. Powder Technology. 2009. 195(3): 245. https://doi.org/10.1016/j.powtec.2009.06.005
3. Gun'ko V.M., Blitz J.P., Zarko V.I. Turov V.V, Pakhlov E.M., Oranska O.I., Goncharuk E.V., Gornikov Y.I., Sergeev V.S., Kulik T.V., Palyanytsya B.B., Samala R.K. Structural and adsorption characteristics and catalytic activity of titania and titania-containing nanomaterials. J. Colloid Interface Sci. 2009. 330(1): 125. https://doi.org/10.1016/j.jcis.2008.10.049
4. Boratyrev V.M., Gun'ko V.M., Galaburda M.V., Borysenko M.V., Pokrovsky V.A., Oranska O.I., Sergeev V.S., Polshin E.V., Korduban O.M., Leboda R., Skubiszewska-Zięba J. Synthesis and characterization of Fe2O3/SiO2 nanocomposites. J. Colloid Interface Sci. 2009. 338(2): P. 376. https://doi.org/10.1016/j.jcis.2009.06.044
5. Gun'ko V.M., Yurchenko G.R., Turov V.V. Goncharuk E.V., Zarko V.I., Zabuga A.G., Matkovsky A.K., Oranska O.I., Leboda R., Skubiszewska-Zieba J., Janusz W., Phillips G.J., Mikhalovsky S.V. Adsorption of polar and nonpolar compounds onto complex nanooxides with silica, alumina, and titania. J. Colloid Interface Sci. 2010. 348(2): 546. https://doi.org/10.1016/j.jcis.2010.04.062
6. Boratyrev V.M., Borysenko L.I., Oranska O.I., Galaburda M.V. Nanocomposites MXOY / SiO2 based on fumed silica and acetates Ni, Mn, Cu, Zn, Mg. Collection Chemistry, Physics and Technology of Surface.2009. 15: 294. [In Russian].
7. Sulim I.Y., Borysenko M.V., Korduban O.M., Gun'ko V.M. Influence of silica morphology on characteristics of grafted nanozirconia. Appl. Surf. Sci. 2009. 255(17): 7818. https://doi.org/10.1016/j.apsusc.2009.04.185
8. Kulik K.S., Borysenko M.V. Synthesis and properties of nanocomposites CeO2 / SiO2. Collection Chemistry, Physics and Technology of Surface. 2009. 15: 303. [In Russian].
9. Gun'ko V.M., Bogatyrov V.M., Oranska O.I., Borysenko L.I., Skubiszewska-Zieba J., Ksiazek A., Leboda R. Structural features of ZnxOy/nanosilica composites. Appl. Surf. Sci. 2013. 276: 802. https://doi.org/10.1016/j.apsusc.2013.04.002
10. Oranska O.I. Thermal transformations of fumed silica, modified with copper oxide. Collection Chemistry, Physics and Technology of Surface. 2010. 2: 105. [In Russian].
11. Oranska O.I. Phase transformations in the composites based on fumed alumina, mixed alumina and silica and copper oxide. Nanostruc. Mater. 2011. 1: 16. [In Russian].
12. Oranska O.I., Gornikov Yu.I. Phase transformations in systems based on individual and mixed fumed alumina and silica and copper oxide(II). Him. Fiz. Tehnol. Poverhni. 2013. 4(4): 385. [In Russian].
13. Oranska O.I., Gornikov Yu.I., Brichka A.V., Brichka S.Ya. Phase transformations in the composites based on fumed alumina, silica and zinc oxide. Nanostruc. Mater. 2015. 1: 50. [In Russian].
14. Hinde S.S., Hosh M., Singh S.G., Sen S., Gadkari S.C., Gupta S.K. Structural and optical properties of Gd2SiO5 prepared from hydrothermally synthesized powder. J. Alloys Compd. 2014. 592: 12. https://doi.org/10.1016/j.jallcom.2013.12.160
15. Harilal M., Nair V.M., Wariar P.R.S., Padmasree K.P., Mashitah M. Yusoff M., Jose R. Electrical and optical properties of NdAlO3 synthesized by an optimized combustion process. Mater. Charact. 2014. 90: 7. https://doi.org/10.1016/j.matchar.2014.01.011
16. Wang X.L., Yang Z., Li J., Fu W.F., Tang P., Chen Y.F., Guo J., Gao Z.H., Huang Y., Tao Y. Hydrothermal synthesis, morphology and luminescent properties of GdAlO3:Eu3+ microcrystals. J. Alloys Compd. 2014. 614: 40. https://doi.org/10.1016/j.jallcom.2014.06.053
17. Jiang C., Wu S., Ma Q., Mei Y. Synthesis and microwave dielectric properties of Nd2SiO5 ceramics. J. Alloys Compd. 2012. 54: 141. https://doi.org/10.1016/j.jallcom.2012.07.076
18. Ramasamy S., Tewari S.N., Lee K.N., Bhatt R.T., Fox D.S. Mullite–gadolinium silicate environmental barrier coatings for melt infiltrated SiC/SiC composites. Surf. Coat. Technol. 2011. 205(12): 3578. https://doi.org/10.1016/j.surfcoat.2010.12.031
19. Yokota H., Yoshida M., Ishibashi H., Yano T., Yamamoto H., Kikkawa S. Cathodoluminescence of Ce-doped Gd2SiO5 and Gd9.33(SiO4)6O2 phosphor under continuous electron irradiation. J. Alloys Compd. 2011. 509: 800. https://doi.org/10.1016/j.jallcom.2010.09.094
20. Takeda N., Itagaki Y., Aono H., Sadaoka Y. Preparation and characterization of Ln9.33+x/3Si6-xAlxO26 (Ln=La, Nd and Sm) with apatite-type structure and its application to a potentiometric O2 gas sensor. Sens. Actuators, B. 2006. 115(1): 455. https://doi.org/10.1016/j.snb.2005.10.009
21. Kobayashi K., Sakka Y. Rudimental research progress of rare-earth silicate oxyapatites: their dentification as a new compound until discovery of their oxygen ion conductivity. J. Ceram. Soc. Jpn. 2014. 122(1428): 649. https://doi.org/10.2109/jcersj2.122.649
22. Kolitsch U., Seffert H.J., Aldinger F. Phase relationships in the system Gd2O3-Al2O3-SiO2. J. Alloys Compd. 1997. 257: 104. https://doi.org/10.1016/S0925-8388(96)03121-0
DOI: https://doi.org/10.15407/hftp08.02.155
Copyright (©) 2017 O. I. Oranska, Yu. I. Gornikov
This work is licensed under a Creative Commons Attribution 4.0 International License.