Chemistry, Physics and Technology of Surface, 2019, 10 (3), 248-271.

Chemically modified mesoporous silicas of MCM 41 type for dyes sorption



DOI: https://doi.org/10.15407/hftp10.03.248

N. V. Roik, L. A. Belyakova, M. O. Dziazko

Abstract


Templated sol-gel synthesis of MCM-41‑type mesoporous silicas was realized in the presence of azo dyes (alizarin yellow and methyl red) as co-templates and silanes obtained on their basis as structure-forming components. It has been found from the results of low-temperature adsorption-desorption of nitrogen that using of azo dyes and dye-containing silanes in sol-gel synthesis leads to the substantial increase of surface area and total pore volume, and decrease of pore diameter of obtained mesoporous organosilicas. The X-ray diffraction analysis proved formation of hexagonally arranged structure of mesopores in synthesized organosilicas. It has been demonstrated due to visualization of mesoporous structure by transmission electron microscopy that all synthesized materials have hexagonally arranged structure of cylindrical pores, entrances to which are oriented outside of particles that provide accessibility of functional groups for sorbate molecules. Obtained organosilicas of MCM-41 type were used in study of dyes sorption from diluted phosphate buffer solutions as dependent on their equilibrium concentration, pH of medium, and duration of contact. It has been found that the most efficient sorption of alizarin yellow takes place at рН ~ 3 and methyl red at рН = 2.5-5.0. Analysis of kinetic curves carried out using Lagergren, Ho‑McKey, and Weber-Morris models has shown that process of azo dyes sorption by organosilicas is described by kinetic model of pseudo‑second order. The parameters of equilibrium sorption of alizarin yellow and methyl red on organosilicas of MCM‑41 type were calculated using Langmuir, Freundlich, Redlich‑Peterson, and Brunauer‑Emmett‑Teller models. Sorption of a number of acid dyes from their individual solutions was studied at pH 4.8. It has been found that chemical immobilization of methyl red on silica surface causes increase of acid dyes sorption. The contribution of cooperative interactions, which arise between the aromatic groups of azo dyes immobilized in surface layer of silica and dye molecules in a solution, in the process of their sorption was confirmed. Modification of silica surface with capable to self-aggregation dyes is a promising way in chemical design of sorption-active materials.


Keywords


sol-gel synthesis; mesoporous silica; chemical modification; dyes; sorption

Full Text:

PDF (Українська)

References


1. Klaus H. Industrial Dyes: Chemistry, Properties, Applications. (Weinheim: Wiley-VCH, 2003).

2. Freeman H.S., Peter A.T. Colorants for Non-textile Applications. (Amsterdam: Elsevier Science, 2000).

3. Zaharia C., Suteu D. Textile organic dyes - characteristics, polluting effects and separation/elimination procedures from industrial effluents. In: Organic pollutants ten years after the Stockholm convention -environmental and analytical update. (Croatia: InTech., 2012).

4. Ratna, Padhi B.S. Pollution due to synthetic dyes toxicity and carcinogenicity studies and remediation. Int. J. Environ. Sci. 2012. 3(3): 940.

5. Shah M.P. Azo dye removal technologies. Austin J. Biotechnol. Bioeng. 2018. 5(1): 1090.

6. Vital R.K., Saibaba K.V.N., Shaik K.B., Gopinath R. Dye removal by adsorption: a review. Journal of Bioremediation and Biodegradation. 2016. 7(6): 000371.

7. Singh K., Arora S. Removal of synthetic textile dyes from aastewaters: a critical review on present treatment technologies. Crit. Rev. Environ. Sci. Technol. 2011. 41(7): 807. https://doi.org/10.1080/10643380903218376

8. Singh P.K., Singh R.L. Bio-removal of azo dyes: a review. Int. J. Appl. Sci. Biotechnol. 2017. 5(2): 108. https://doi.org/10.3126/ijasbt.v5i2.16881

9. Panic V.V., Seslija S.I., Nesic A.R., Velickovic S. Adsorption of azo dyes on polymer materials. Hem. Ind. 2013. 67(6): 881. https://doi.org/10.2298/HEMIND121203020P

10. Ghemati Dj., Aliouche Dj. Dye adsorption behavior of polyvinyl alcohol/glutaraldehyde/β cyclodextrin polymer membranes. J. Appl. Spectrosc. 2014. 81(2): 257. https://doi.org/10.1007/s10812-014-9919-4

11. Foo K.Y., Hameed B.H. An overview of dye removal via activated carbon adsorption process. Desalin. Water Treat. 2010. 19(1-3): 255. https://doi.org/10.5004/dwt.2010.1214

12. Krysztafkiewicz A., Binkowski S., Jesionowski T. Adsorption of dyes on a silica surface. Appl. Surf. Sci. 2002. 199(1-4): 31. https://doi.org/10.1016/S0169-4332(02)00248-9

13. Buvaneswari N., Kannan C. Adsorption of cationic and anionic organic dyes from aqueous solution using silica. J. Environ. Sci. Eng. 2010. 52(4): 361.

14. Wu Y., Zhang M., Zhao H., Yang S., Arkin A. Functionalized mesoporous silica material and anionic dye adsorption: MCM-41 incorporated with amine groups for competitive adsorption of Acid Fuchsine and Acid Orange II. RSC Adv. 2014. 4(106): 61256. https://doi.org/10.1039/C4RA11737A

15. Saxena R., Sharma S. Adsorption and kinetic studies on the removal of methyl red from aqueous solutions using low-cost adsorbent: guargum powder. Int. J. Sci. Eng. Res. 2016. 7(3): 685.

16. Alaguprathana M., Poonkothai M. Decolourisation of the textile dye methyl red from aqueous solution using sugarcane bagasse pith. Asian J. Adv. Agric. Res. 2017. 3(3): 1. https://doi.org/10.9734/AJAAR/2017/37246

17. Abbas F.S. Dyes removal from wastewater using agricultural waste. Adv. Environ. Biol. 2013. 7(6): 1019.

18. Enenebeaku C.K., Okorocha N.J., Uchechi E.E., Ukaga I.C. Adsorption and equilibrium studies on the removal of methyl red from aqueous solution using white potato peel powder. International Letters of Chemistry, Physics and Astronomy.2017. 72: 52. https://doi.org/10.18052/www.scipress.com/ILCPA.72.52

19. Santhi T., Manonmani S., Smitha T. Removal of methyl red from aqueous solution by activated carbon prepaped from the Anonna squmosa seed by adsorption. Chem. Eng. Res. Bull. 2010. 14(1): 11. https://doi.org/10.3329/cerb.v14i1.3767

20. Lee C.-K., Liu S.-S., Juang L.-C., Wang C.-C., Lin K.-S., Lyu M.-D. Application of MCM-41 for dyes removal from wastewater. J. Hazard. Mater. 2007. 147(3): 997. https://doi.org/10.1016/j.jhazmat.2007.01.130

21. Juang L.-C., Wang C.-C., Lee C.-K. Adsorption of basic dyes onto MCM-41. Chemosphere. 2006. 64(11): 1920. https://doi.org/10.1016/j.chemosphere.2006.01.024

22. Wu X., Hui K.N., Hui K.S., Lee S.K., Zhou W., Chen R., Hwang D.H., Cho Y.R., Son Y.G. Adsorption of basic yellow 87 from aqueous solution onto two different mesoporous adsorbents. Chem. Eng. J. 2012. 180: 91. https://doi.org/10.1016/j.cej.2011.11.009

23. Mirzajani R., Pourreza N., Zayadi A., Malakooti R., Mahmoodi H. Nanoporous calcined MCM-41 silica for adsorption and removal of Victoria blue dye from different natural water samples. Desalin. Water Treat. 2016. 57(13): 5903. https://doi.org/10.1080/19443994.2015.1005690

24 Anbia M., Hariri S.A. Removal of methylene blue from aqueous solution using nanoporous SBA 3. Desalination. 2010. 261(1-2): 61. https://doi.org/10.1016/j.desal.2010.05.030

25. Joo J.B., Park J., Yi J. Preparation of polyelectrolyte-functionalized mesoporous silicas for the selective adsorption of anionic dye in an aqueous solution. J. Hazard. Mater. 2009. 168(1): 102. https://doi.org/10.1016/j.jhazmat.2009.02.015

26. Zanjanchi M.A., Sajjadi H., Arvand M., Mohammad-Khah A., Ghalami-Choobar B. Modification of MCM-41 with anionic surfactant: a convenient design for efficient removal of cationic dyes from wastewater clean. Soil, Air, Water. 2011. 39(11): 1007. https://doi.org/10.1002/clen.201000350

27. Anbia M., Hariri S.A., Ashrafizadeh S.N. Adsorptive removal of anionic dyes by modified nanoporous silica SBA-3. Appl. Surf. Sci. 2010. 256(10): 3228. https://doi.org/10.1016/j.apsusc.2009.12.010

28. Boukoussa B., Hamacha R., Morsli A., Bengueddach A. Adsorption of yellow dye on calcined or uncalcined Al-MCM-41 mesoporous materials. Arab. J. Chem. 2017. 10(2): S2160. https://doi.org/10.1016/j.arabjc.2013.07.049

29. Zubieta C., Sierra M.B., Morini M.A., Schulz P.C., Albertengo L., Rodriguez M.S. The adsorption of dyes used in the textile industry on mesoporous materials. Colloid Polym. Sci. 2008. 286(4): 377. https://doi.org/10.1007/s00396-007-1777-7

30. Anbia M., Salehi S. Removal of acid dyes from aqueous media by adsorption onto amino-functionalized nanoporous silica SBA-3. Dyes Pigments. 2012. 94(1): 1. https://doi.org/10.1016/j.dyepig.2011.10.016

31. Santos D.O., Santos Md.L.N., Costa J.A.S., de Jesus R.A., Navickiene S., Sussuchi E.M., Mesquita M.E. Investigating the potential of functionalized MCM-41 on adsorption of Remazol Red dye. Environ. Sci. Pollut. Res. Int. 2013. 20(7): 5028. https://doi.org/10.1007/s11356-012-1346-6

32. Kang J.-K., Park J.-A., Kim J.-H., Lee C.-G., Kim S.-B. Surface functionalization of mesoporous silica MCM-41 with 3-aminopropyltrimethoxysilane for dye removal: kinetic, equilibrium, and thermodynamic studies. Desalin. Water Treat. 2016. 57(15): 1. https://doi.org/10.1080/19443994.2015.1014856

33. Ho K.Y., Mckay G., Yeung K.L. Selective adsorbents from ordered mesoporous silica. Langmuir. 2003. 19(7): 3019. https://doi.org/10.1021/la0267084

34. Lewandowski D., Olejnik A., Schroeder G. Adsorption studies and release of selected dyes from functionalized mesoporous MCM-41 silica. Cent. Eur. J. Chem. 2014. 12(2): 233. https://doi.org/10.2478/s11532-013-0361-x

35. Tawarah K.M., Khouri S.J. The tautomeric and acid-base equilibria of p-methyl red in aqueous solutions. Dyes and Pigments. 1992. 20(4): 261. https://doi.org/10.1016/0143-7208(92)87025-V

36. Tawarah K.M., Wazwaz A.A. The electrical conductivities of the sodium salts of methyl orange, o-methyl red and p-methyl red in aqueous solutions. Dyes and Pigments. 1993. 21(2): 97. https://doi.org/10.1016/0143-7208(93)85018-U

37. Hamada K., Kubota H., Ichimura A., Lijima T., Amiya S. Aggregation of an azo dye in aqueous solution. Ber. Bunsenges. Phys. Chem. 1985. 89(8): 859. https://doi.org/10.1002/bbpc.19850890811

38. Hamada K., Nonogaki H., Fukushima Y., Munkhbat B., Mitsuishi M. Effects of hydrating water molecules on the aggregation behavior of azo dyes in aqueous solutions. Dyes and Pigments. 1991. 16(2): 111. https://doi.org/10.1016/0143-7208(91)85003-Q

39. Neumann B., Huber K., Pollmann P. A comparative experimental study of the aggregation of Acid Red 266 in aqueous solution by use of 19F-NMR, UV/Vis spectroscopy and static light scattering. Phys. Chem. Chem. Phys. 2000. 2(16): 3687. https://doi.org/10.1039/b004172f

40. Mariani G., Kutz A., Di Z., Schweins R., Gröhn F. Inducing hetero-aggregation of different azo dyes through electrostatic self-assembly. Chem. Eur. J. 2017. 23(26): 6249. https://doi.org/10.1002/chem.201605194

41. Barrett E.P., Joyner L.G., Halenda P.H. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951. 73(1): 373. https://doi.org/10.1021/ja01145a126

42. Neimark A.V., Ravikovitch P.I., Grun M., Schuth F., Unger K.K. Pore size analysis of MCM-41 type adsorbents by means of nitrogen and argon adsorption. J. Colloid Interface Sci. 1998. 207(1): 159. https://doi.org/10.1006/jcis.1998.5748

43. Gregg S.H., Sing K.S. Adsorption, surface area and porosity. (New York: Academic Press, 1967). https://doi.org/10.1149/1.2426447

44. Bragg W.L. The diffraction of short electromagnetic waves by a crystal. Proc. Cambridge Philosophical Soc. 2013. 17: 43.

45. Fenelonov V.B., Romannikov V.N., Derevyankin A.Yu. Mesopore size and surface area calculations for hexagonal mesophases (types MCM-41, FSM-16, etc.) using low-angle XRD and adsorption data. Microporous Mesoporous Mater. 1999. 28(1): 57. https://doi.org/10.1016/S1387-1811(98)00280-7

46. Belyakova L.A., Besarab L.N., Roik N.V., Lyashenko D.Yu., Vlasova N.N., Golovkova L.P., Chuiko A.A. Designing of the centers for adsorption of bile acids on a silica surface. J. Colloid Interface Sci. 2006. 294(1): 11. https://doi.org/10.1016/j.jcis.2005.06.081

47. El Mekkawi D., Abdel-Mottaleb M.S.A. The interaction and photostability of some xanthenes and selected azo sensitizing dyes with TiO2 nanoparticles. Int. J. Photoenergy. 2005. 7(2): 95. https://doi.org/10.1155/S1110662X05000140

48. Drummond C.J., Grieser F., Healy T.W. Acid-base equilibria in aqueous micellar solutions. Part 4. - Azo indicators. J. Chem. Soc., Faraday Trans. 1. 1989. 85(3): 561. https://doi.org/10.1039/f19898500561

49. Weber W.J., Morris J.C. Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division. 1963. 89(2): 31.

50. Gritti F., Guiochon G. New thermodynamically consistent competitive adsorption isotherm in RPLC. J. Colloid Interface Sci. 2003. 264(1): 43. https://doi.org/10.1016/S0021-9797(03)00332-1

51. Ebadi A., Mohammadzadeh J.S.S., Khudiev A. What is correct form of BET isotherm for modeling liquid phase adsorption? Adsorption. 2009. 15(1): 65. https://doi.org/10.1007/s10450-009-9151-3

52. Stastna M., Travnicek M., Slais K. New azo dyes as colored isoelectric point markers for isoelectric focusing in acidic pH region. Electrophoresis. 2005. 26(1): 53. https://doi.org/10.1002/elps.200406088

53. Pirillo S., Rueda E.H. The effect of pH in the adsorption of alizarin and eriochrome blue black R onto iron oxides. J. Hazard. Mater. 2009. 168(1): 168. https://doi.org/10.1016/j.jhazmat.2009.02.007

54. Haynes W.M. CRC Handbook of Chemistry and Physics (92nd ed.). (Boca Raton, FL: CRC Press, Taylor and Francis Group, 2011-2012).

55. MacFarlane D.R., Pringle J.M., Johansson K.M., Forsyth S.A., Forsyth M. Lewis base ionic liquids. Chem. Commun. 2006. 18: 1905. https://doi.org/10.1039/b516961p




DOI: https://doi.org/10.15407/hftp10.03.248

Copyright (©) 2019 N. V. Roik, L. A. Belyakova, M. O. Dziazko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.