Nano/meso/macroporous materials characterization affected by experimental conditions and features of the used methods
DOI: https://doi.org/10.15407/hftp11.01.005
Abstract
The aim of this study was to analyze a set of methods: adsorption, X-ray, microscopic, cryoporometry, relaxometry, and thermoporometry used to investigate the morphological and textural characteristics of materials being in vacuum, or gaseous or liquid dispersion media, as well the interfacial phenomena basic for the used approaches. Techniques used in the studies should be divided into eight groups: (i) adsorption-desorption of low-molecular weight probe compounds (N2, Ar, etc.); (ii) adsorption or confinement of low- or high-molecular weight compounds in pores (voids) of solid particles being in liquid media; (iii) small angle X-ray scattering (SAXS) or small angle neutron scattering (SANS); (iv) quantitative analysis of images recorded using microscopic methods (TEM, SEM, AFM), etc.; (v) thermoporometry based on differential scanning calorimetry (DSC) with decreasing-increasing temperature utilizing melting thermograms; (vi) cryoporometry based on low-temperature 1H NMR spectroscopy giving the dependence of signal intensity on temperature; (vii) relaxometry based on NMR spectroscopy dealing with transverse relaxation time vs. temperature; and (viii) relaxometry based on thermally stimulated depolarization current (TSDC) measurements related to dipolar and dc relaxations. Each method could be characterized by systematic errors caused by many factors. However, the use of a set of the aforementioned methods in parallel can allow one to elucidate the reasons and level of these systematic errors that is of importance for correct characterization of the materials studied. Thus, the larger the number of methods used in parallel, the more comprehensive the morphological and textural characterization of the adsorbents.
Keywords
References
1. Taylor J.R. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. 2nd Edition. (Sausalito, California: University Science Books, 1997).
2. Bevington P.R., Robinson D.K. Data Reduction and Error Analysis for the Physical Sciences. 2nd Edition. (Boston: WCB/McGraw-Hill, 1992). https://doi.org/10.1119/1.17439
3. Kirkup L. Experimental Methods. (John Wiley & Sons Australia, Limited, 2002).
4. Baird D.C. Experimentation: An Introduction to Measurement Theory and Experiment Design. 3rd ed. (Prentice Hall Englewood Cliffs, 1995).
5. Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. 2nd ed. (London: Academic Press, 1982).
6. Adamson A.W., Gast A.P. Physical Chemistry of Surface. 6th edition. (New York: Wiley, 1997).
7. Iler R.K. The Chemistry of Silica. (Chichester: Wiley, 1979).
8. Legrand A.P. The Surface Properties of Silicas. (New York: Wiley, 1998).
9. Bergna H.E., Roberts W.O. Colloidal Silica: Fundamentals and Applications. (Boca Raton: CRC Press, 2006).
10. Tapia O., Bertrán J. (Eds.) Solvent Effects and Chemical Reactivity. (New York: Kluwer Academic Publishers, 2000).
11. Somasundaran P. (Ed.) Encyclopedia of Surface and Colloid Science. Third Edition. (Boca Raton: CRC Press, 2015). https://doi.org/10.1081/E-ESCS3
12. Henderson M.A. Interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Report. 2002. 46(1-8): 1. https://doi.org/10.1016/S0167-5729(01)00020-6
13. Birdi K.S. (Ed.) Handbook of Surface and Colloid Chemistry. Third edition. (Boca Raton: CRC Press, 2009). https://doi.org/10.1201/9781420007206.ch1
14. Al-Abadleh H.A., Grassian V.H. Oxide surfaces as environmental interfaces. Surf. Sci. Report. 2003. 52(3-4): 63. https://doi.org/10.1016/j.surfrep.2003.09.001
15. Chandler D. Interfaces and the driving force of hydrophobic assembly. Nature. 2005. 437: 640. https://doi.org/10.1038/nature04162
16. Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013). https://doi.org/10.1201/b14202
17. Gun'ko V.M. Composite materials: textural characteristics. Appl. Surf. Sci. 2014. 307: 444. https://doi.org/10.1016/j.apsusc.2014.04.055
18. Gun'ko V.M., Turov V.V., Gorbik P.P. Water at the Interfaces. (Kyiv: Naukova Dumka, 2009).
19. Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk O.V., Pahklov E.M., Skubiszewska-Zięba J., Blitz J.P. Interfacial phenomena at a surface of individual and complex fumed nanooxides. Adv. Colloid Interface Sci. 2016. 235: 108. https://doi.org/10.1016/j.cis.2016.06.003
20. Gun'ko V.M. Interfacial phenomena: effects of confined space and structure of adsorbents on the behavior of polar and nonpolar adsorbates at low temperatures. Current Physical Chemistry. 2015. 5(2): 137. https://doi.org/10.2174/187794680502160111093413
21. Gun'ko V.M., Pakhlov E.M., Goncharuk O.V., Andriyko L.S., Nychiporuk Yu.M., Balakin D.Yu., Sternik D., Derylo-Marczewska A. Nanosilica modified by polydimethylsiloxane depolymerized and chemically bound to nanoparticles or physically bound to unmodified or modified surfaces: Structure and interfacial phenomena. J. Colloid Interface Sci. 2018. 529: 273. https://doi.org/10.1016/j.jcis.2018.06.019
22. Gun'ko V.M., Zarko V.I., Goncharuk O.V., Matkovsky A.K., Remez O.S., Skubiszewska-Zięba J., Wojcik G., Walusiak B., Blitz J.P. Nature and morphology of fumed oxides and features of interfacial phenomena. Appl. Surf. Sci. 2016. 366: 410. https://doi.org/10.1016/j.apsusc.2016.01.062
23. Gun'ko V.M., Turov V.V., Krupska T.V., Pakhlov E.M. Behavior of water and methane bound to hydrophilic and hydrophobic nanosilicas and their mixture. Chem. Phys. Lett. 2017. 690: 25. https://doi.org/10.1016/j.cplett.2017.10.039
24. Turov V.V., Gun'ko V.M., Pakhlov E.M., Krupska T.V., Tsapko M.D., Charmas B., Kartel M.T. Influence of hydrophobic nanosilica and hydrophobic medium on water bound in hydrophilic components of complex systems. Colloids Surf. A. 2018. 552: 39. https://doi.org/10.1016/j.colsurfa.2018.05.017
25. Gun'ko V.M., Pakhlov E.M., Goncharuk O.V., Andriyko L.S., Marynin A.I., Ukrainets A.I., Charmas B., Skubiszewska-Zięba J., Blitz J.P. Influence of hydrophobization of fumed oxides on interactions with polar and nonpolar adsorbates. Appl. Surf. Sci. 2017. 423: 855. https://doi.org/10.1016/j.apsusc.2017.06.207
26. Gun'ko V.M., Turov V.V., Pakhlov E.M., Krupska T.V., Charmas B. Effect of water content on the characteristics of hydro-compacted nanosilica. Appl. Surf. Sci. 2018. 459: 171. https://doi.org/10.1016/j.apsusc.2018.07.213
27. Gun'ko V.M., Turov V.V., Turov A.V., Zarko V.I., Gerda V.I., Yanishpolskii V.V., Berezovska I.S., Tertykh V.A. Behaviour of pure water and water mixture with benzene or chloroform adsorbed onto ordered mesoporous silicas. Central European Journal of Chemistry. 2007. 5(2): 420. https://doi.org/10.2478/s11532-007-0010-3
28. Gun'ko V.M. Various methods to describe the morphological and textural characteristics of various materials. Him. Fiz. Tehnol. Poverhni. 2018. 9(4): 317. https://doi.org/10.15407/hftp09.04.317
29. Gun'ko V.M., Mikhalovsky S.V. Evaluation of slitlike porosity of carbon adsorbents. Carbon. 2004. 42(4): 843. https://doi.org/10.1016/j.carbon.2004.01.059
30. Do D.D., Nguyen C., Do H.D. Characterization of micro-mesoporous carbon media. Colloids Surf. A. 2001. 187-188: 51. https://doi.org/10.1016/S0927-7757(01)00621-5
31. Platzer B., Maurer G. Application of a generalized Bender equation of state to the description of vapour-liquid in binary systems. Fluid Phase Equilibr. 1993. 84: 79. https://doi.org/10.1016/0378-3812(93)85118-6
32. Muniz W.B., Ramos F.M., de Campos Velho H.F. Entropy- and Tikhonov-based regularization techniques applied to the backwards heat equation. Comput. Math. Appl. 2000. 40(8-9): 1071. https://doi.org/10.1016/S0898-1221(00)85017-8
33. Provencher S.W. A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput. Phys. Commun. 1982. 27(3): 213. https://doi.org/10.1016/0010-4655(82)90173-4
34. Gun'ko V.M., Voronin E.F., Nosach L.V., Turov V.V., Wang Z., Vasilenko A.P., Leboda R., Skubiszewska-Zięba J., Janusz W., Mikhalovsky S.V. Structural, textural and adsorption characteristics of nanosilica mechanochemically activated in different media. J. Colloid Interface Sci. 2011. 355(2): 300. https://doi.org/10.1016/j.jcis.2010.12.008
35. Gun'ko V.M., Leboda R., Skubiszewska-Zięba J., Gawdzik B., Charmas B. Structural characteristics of porous polymers treated by freezing with water or acetone. Appl. Surf. Sci. 2005. 252(3): 612. https://doi.org/10.1016/j.apsusc.2005.02.075
36. Pujari P.K., Sen D., Amarendra G., Abhaya S., Pandey A.K., Dutta D., Mazumder S. Study of pore structure in grafted polymer membranes using slow positron beam and small-angle X-ray scattering techniques. Nucl. Instrum. Methods Phys. Res., Sect. B. 2007. 254(2): 278. https://doi.org/10.1016/j.nimb.2006.11.052
37. Sternik D., Galaburda M., Bogatyrov V.M., Gun'ko V.M. Influence of the synthesis method on the structural characteristics of novel hybrid adsorbents based on bentonite. Colloids Interfaces. 2019. 3(1): 18. https://doi.org/10.3390/colloids3010018
38. Gun'ko V.M., Meikle S.T., Kozynchenko O.P., Tennison S.R., Ehrburger-Dolle F., Morfin I., Mikhalovsky S.V. Comparative characterization of carbon and polymer adsorbents by SAXS and nitrogen adsorption methods. J. Phys. Chem. C. 2011. 115(21): 10727. https://doi.org/10.1021/jp201835r
39. Sakurai S. SAXS evaluation of size distribution for nanoparticles. Chapter 5 (https://dx.doi.org/10.5772/105981), In A.E. Ares (ed.), X-ray Scattering, (DOI: 10.5772/65049), (Croatia: InTech, 2017). P. 107-134.
40. Brumberger H. (Ed.) Small Angle X-ray Scattering. (New York, Syracuse: Gordon & Breach, 1965).
41. Dieudonné Ph., Hafidi A.A., Delord P., Phalippou J. Transformation of nanostructure of silica gels during drying. J. Non-Crystal. Solids. 2000. 262(1-3): 155. https://doi.org/10.1016/S0022-3093(99)00687-0
42. Fairén-Jiménez D., Carrasco-Marín F., Djurado D., Bley F., Ehrburger-Dolle F., Moreno-Castilla C. Surface area and microporosity of carbon aerogels from gas adsorption and small- and wide-angle X-ray scattering measurements. J. Phys. Chem. B. 2006. 110(17): 8681. https://doi.org/10.1021/jp055992f
43. Gun'ko V.M., Turov V.V., Pakhlov E.M., Krupska T.V., Charmas B. Effect of water content on the characteristics of hydro-compacted nanosilica. Appl. Surf. Sci. 2018. 459: 171. https://doi.org/10.1016/j.apsusc.2018.07.213
44. Goliszek M., Podkościelna B., Fila K., Riazanova A.V., Aminzadeh S., Sevastyanova O., Gun'ko V.M. Synthesis and structure characterization of polymeric nanoporous microspheres with lignin. Cellulose. 2018. 25(10): 5843. https://doi.org/10.1007/s10570-018-2009-7
45. Gun'ko V.M., Turov V.V., Pakhlov E.M., Krupska T.V., Borysenko M.V., Kartel M.T., Charmas B. Water interactions with hydrophobic versus hydrophilic nanosilica. Langmuir. 2018. 34(40): 12145. https://doi.org/10.1021/acs.langmuir.8b03110
46. ImageJ. 2019. https://imagej.nih.gov/ij/, https://imagej.nih.gov/ij/plugins/granulometry.html.
47. Fiji. 2019. https://fiji.sc/, https://imagej.net/Local_Thickness.
48. Gun'ko V.M., Savina I.N., Mikhalovsky S.V. Cryogels: Morphological, structural and adsorption characterization. Adv. Colloid Interface Sci. 2013. 187-188: 1. https://doi.org/10.1016/j.cis.2012.11.001
49. Gun'ko V.M., Zarko V.I., Leboda R., Chibowski E. Aqueous suspensions of fumed oxides: particle size distribution and zeta potential. Adv. Colloid Interface Sci. 2001. 91(1): 1. https://doi.org/10.1016/S0001-8686(99)00026-3
50. Gun'ko V.M., Klyueva A.V., Levchuk Yu.N., Leboda R. Photon correlation spectroscopy investigations of proteins. Adv. Colloid Interface Sci. 2003. 105(1-3): 201. https://doi.org/10.1016/S0001-8686(03)00091-5
51. Hunter R.J. Introduction to Modern Colloid Science. (London: Oxford University Press, 1993).
52. Mitchell J., Webber J.B.W., Strange J.H. Nuclear magnetic resonance cryoporometry. Phys. Rep. 2008. 461(1): 1. https://doi.org/10.1016/j.physrep.2008.02.001
53. Petrov O.V., Furó I. NMR cryoporometry: Principles, applications and potential. Progr. NMR Spectroscopy. 2009. 54(2): 97. https://doi.org/10.1016/j.pnmrs.2008.06.001
54. Aksnes D.W., Forl K., Kimtys L. Pore size distribution in mesoporous materials as studied by 1H NMR. Phys. Chem. Chem. Phys. 2001. 3(15): 3203. https://doi.org/10.1039/b103228n
55. Hay J.N., Laity P.R. Observations of water migration during thermoporometry studies of cellulose films. Polymer. 2000. 41(16): 6171. https://doi.org/10.1016/S0032-3861(99)00828-9
56. Landry M.R. Thermoporometry by differential scanning calorimetry: experimental considerations and applications. Thermochim. Acta. 2005. 433(1-2): 27. https://doi.org/10.1016/j.tca.2005.02.015
57. Weber J., Bergström L. Mesoporous hydrogels: revealing reversible porosity by cryoporometry, X-ray scattering, and gas adsorption. Langmuir. 2010. 26(12): 10158. https://doi.org/10.1021/la100290j
58. Rohman G., Lauprêtre F., Boileau S., Guérin P., Grande D. Poly(D,L-lactide)/poly(methyl methacrylate) interpenetrating polymer networks: synthesis, characterization, and use as precursors to porous polymeric materials. Polymer. 2007. 48(24): 7017. https://doi.org/10.1016/j.polymer.2007.09.044
59. Turov V.V., Gun'ko V.M., Zarko V.I., Goncharuk O.V., Krupska T.V., Turov A.V., Leboda R., Skubiszewska-Zięba J. Interfacial behavior of n-decane bound to weakly hydrated silica gel and nanosilica over a broad temperature range. Langmuir. 2013. 29(13): 4303. https://doi.org/10.1021/la400392h
60. Gun'ko V.M., Turov V.V., Zarko V.I., Pakhlov E.M., Charmas B., Skubiszewska-Zięba J. Influence of structural organization of silicas on interfacial phenomena. Colloids Surf. A. 2016. 492: 230. https://doi.org/10.1016/j.colsurfa.2015.12.030
61. Gun'ko V.M., Goncharuk O.V., Goworek J. Evaporation of polar and nonpolar liquids from silica gels and fumed silica. Colloids Surf. A. 2015. 474: 52. https://doi.org/10.1016/j.colsurfa.2015.03.007
62. Gun'ko V.M., Zarko V.I., Goncharuk E.V., Andriyko L.S., Turov V.V., Nychiporuk Y.M., Leboda R., Skubiszewska-Zięba J., Gabchak A.L., Osovskii V.D., Ptushinskii Y.G., Yurchenko G.R., Mishchuk O.A., Gorbyk P.P., Pissis P., Blitz J.P. TSDC spectroscopy of relaxational and interfacial phenomena. Adv. Colloid Interface Sci. 2007. 131(1-2): 1. https://doi.org/10.1016/j.cis.2006.11.001
DOI: https://doi.org/10.15407/hftp11.01.005
Copyright (©) 2020 V. M. Gun'ko
This work is licensed under a Creative Commons Attribution 4.0 International License.