Research of toxic behavior of copper nanoparticles: effect on electrosurface and biochemical parameters of bacterial cells
DOI: https://doi.org/10.15407/hftp14.03.372
Abstract
This research is aimed at the investigation the electrosurface and biochemical parameters of bacterial cells B. cereus B4368, L. plantarum, E. coli K-A, P. fluorescens B5040 under the influence of copper in ionic form and as nanoparticles in order to determine the nature and level of their toxic effect on bacteria. Copper nanoparticles synthesized in aqueous solution with NaBH4 and stabilized with dextran were used. Changes in membrane transport parameters were assessed by the value of ATPase activity; changes in transmembrane potential were assessed by the method of penetrating tetraphenylphosphonium cations (TPP+); and bacterial integrity was assessed by UV spectroscopy of cellular metabolites. A concentration-dependent inhibition of the membrane ATPase reaction and dissipation of the transmembrane potential under the action of both forms of copper was found, and the inhibitory effect in the case of the nanoparticles was on average 20 % higher than in the ionic form. As a result of heterocoagulation of dextran-stabilized copper nanoparticles and bacteria, a decrease in the negative ξ - potential of bacteria was observed, which was 40 % more effective under the action of copper nanoparticles compared to Cu2+ ions. The most significant changes in membrane parameters were observed in the range 10–60 μM of copper concentrations. With B. cereus B4368 cells taken as an example, we found a violation of the barrier function of their cell membrane under the influence of both copper preparations. In the case of copper nanoparticles, nucleic acid leakage from the bacterial cytoplasm was detected, which was confirmed by the absorption band at 260 nm. The results obtained indicate a high level of sensitivity of the studied electrosurface and biochemical parameters of bacterial cells to the effects of ionic and nanoparticle copper, which allows them to be used as indicators of the toxicity of metal nanoparticles in the development of metal-containing probiotic preparations.
Keywords
References
Zhang N., Xiong G., Liu Z. Toxicity of metal-based nanoparticles: challenges in the nano era. Front. Bioeng. Biotechnol. 2022. 10: 1001572. https://doi.org/10.3389/fbioe.2022.1001572
Mu Y., Wu F., Zhao Q., Ji R., Qie Y., Yue Z., Hu Y., Pang C., Hristozov D., Giesy J.P., Xing B. Predicting toxic potencies of metal oxide nanoparticles by means of nano-QSARs. Nanotoxicology. 2016. 10(9): 12074. https://doi.org/10.1080/17435390.2016.1202352
Cao, Y., Li, S., Chen, J. Modeling better in vitro models for the prediction of nanoparticle toxicity: a review. Toxicol. Mech. Methods. 2021. 31(1): 1. https://doi.org/10.1080/15376516.2020.1828521
Yang W., Wan L., Mettenbrin, E.M., DeAngelis P.L., Wilhelm S. Nanoparticle toxicology. Annu. Rev. Pharmacol. Toxicol. 2021. 61: 269. https://doi.org/10.1146/annurev-pharmtox-032320-110338
Ulberg Z.R., Gruzina T.G., Pertsov N.V. Colloidal and Chemical Properties of Biological Nanosystems. In: Colloidal and Chemical Fundamentals of Nanoscience. (Kyiv: Academperiodyka, 2005). [in Russian].
Aljerf L., AlMasri N.A. Gateway to metal resistance: bacterial response to heavy metal toxicity in the biological environment. Annals of Advances in Chemistry. 2018. 2(1): 032. https://doi.org/10.29328/journal.aac.1001012
Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. Molecular Biology of the Cell. 4th edn. (New York: Garland Science, 2002).
Bradberry S.M. Metals (cobalt, copper, lead, mercury). Medicine. 2016. 44(3): 182. https://doi.org/10.1016/j.mpmed.2015.12.008
Chekman I.S., Ulberg Z.R., Malanchuk V.O., Gorchakova N.O., Zupanets I.A. Nanoscience, Nanobiology, Nanopharmacy. (Kyiv: Polygraph plus, 2012). [in Ukrainian].
Ermini M.L., Voliani V. Antimicrobial nano-agents: the copper age. Review. ACS Nano. 2021. 15(4): 6008. https://doi.org/10.1021/acsnano.0c10756
Studer A.M., Limbach L.K., Van Duc L., Krumeich F., Athanassiou E.K., Gerber L.C., Moch H., Stark W.J. Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticle. Toxicol. Lett. 2010. 197(3): 169. https://doi.org/10.1016/j.toxlet.2010.05.012
Nikolova M.P., Chavali M.S. Metal oxide nanoparticles as biomedical materials. Biomimetics. 2020. 5(2): 27. https://doi.org/10.3390/biomimetics5020027
Zhou Y., Wei F., Zhang W., Guo Z., Zhang L. Copper bioaccumulation and biokinetic modeling in marine herbivorous fish Siganus oramin. Aquat. Toxicol. 2018. 196: 61. https://doi.org/10.1016/j.aquatox.2018.01.009
Ahamed M., Alhadlaq H.A., Majeed Khan M.A., Karuppiah P. Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J. Nanomaterials. 2014. 3: 1. https://doi.org/10.1155/2014/637858
Rubilar O., Rai M., Tortella G., Diez M.C., Seabra A.B., Durán N. Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnol. Lett. 2013. 35(9): 1365. https://doi.org/10.1007/s10529-013-1239-x
De Man J.C., Rogosa M., Sharpe M.E. A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 1960. 23(1): 130. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x
Dukhin S.S., Deryagin B.V. Electrophoresis. (Moscow: Nauka, 1976). [in Russian].
Kompanets I.V. Methodological Recommendations for a Special Course and a special Workshop. Determination of the Structure and Functions of Biological Membranes. (Electronic manual www.biol.univ.ua, 2013). [in Ukrainian].
Ostapchenko L.I., Mykhailyk I.V. Biological Membranes: Methods of Structure and Function Research: Study Guide. (Kyiv: Publishing and printing center "Kyiv University", 2006). [in Ukrainian].
Grinius L.L. Daugelavichius R.Yu., Alkimavichius G.A. Investigation of membrane potential of Bacillus subtilis and Escherichia coli cells by penetrating ion method. Biochemistry. 1980. 45(9): 1609. [in Russian].
Ogurtsov A.N., Blyzniuk O.N., Antropova L.A. Physicochemical Fundamentals of Biotechnology. Practical Guidance. Tutorial. (Kharkov: Publishing Center NTU "KhPU", 2014).
Kouhkan M., Ahagar P., Babaganjeh L.A., Allahuari-Devin M. Biosynthesis of copper oxide nanoparticles using Lactobacillus casei Subsp. Casei and its anticancer and antibacterial activities. Curr. Nanosci. 2020. 16(1): 101. https://doi.org/10.2174/1573413715666190318155801
Golovko A.M., Reznichenko L.S., Roman'ko M.E., Gruzina T.G., Dybkova S.M., Ulberg Z.R. Evaluation and control of biological safety of nanomaterials in veterinary medicine. Bulletin of agrarian science. 2011. 5: 24. [in Ukrainian].
Alizadeh S., Seyedalipour B., Shafieyan S., Kheime A., Mohammadi P., Aghdami N. Copper nanoparticles promote rapid wound healing in acute full thickness defectvia acceleration of skin cell migration, proliferation, and neovascularization. Biochem. Biophys. Res. Commun. 2019. 517(4): 684. https://doi.org/10.1016/j.bbrc.2019.07.110
Jayaramudu T., Varaprasad K., Reddy K.K., Pyarasani R.D., Akbari-Fakhrabad A., Amalraj J. Chitosan-pluronic based Cu nanocomposite hydrogels for prototype antimicrobial applications. Int. J. Biol. Macromol. 2020. 143: 825. https://doi.org/10.1016/j.ijbiomac.2019.09.143
Qiu H., Pu F., Liu Z., Liu X., Dong K., Liu C., Ren J., Qu X. Hydrogel-based artificial enzyme for combating bacteria and accelerating wound healing. Nano Res. 2020. 13(2): 496. https://doi.org/10.1007/s12274-020-2636-9
Albright L.J., Wilson E.M. Sub-lethal effects of several metallic salts-organic compounds combinations upon the heterotrophic microflora of a natural water. Water Res. 1974. 8: 101. https://doi.org/10.1016/0043-1354(74)90133-X
Dybkova S.M. The DNA-comet method in assessing the safety of metal nanoparticles for biotechnological and medical purpose. Bulletin of Biology and Medicine Problems. 2014. 3(3): 279. [in Ukrainian].
Simonov P.V. Investigation of acute toxicity of copper nanoparticles by intragastric injection to mice. Pharmacology and drug toxicology. 2015. 4-5: 79. [in Ukrainian].
Simonov P.V. Effect of copper nanoparticles on hemodynamic parameters of rabbits in an acute experiment. Pharmaceutical Journal. 2015. 4: 96. [in Ukrainian].
DOI: https://doi.org/10.15407/hftp14.03.372
Copyright (©) 2023 T. G. Gruzina, L. S. Rieznichenko, L. M. Yakubenko, V. I. Podolska, N. I. Grishchenko, Z. R. Ulberg, S. M. Dybkova
This work is licensed under a Creative Commons Attribution 4.0 International License.