Chemistry, Physics and Technology of Surface, 2024, 15 (2), 171-182.

Photo-induced acceleration of chemical reactions by spherical mono- and bimetallic nanoparticles



DOI: https://doi.org/10.15407/hftp15.02.171

N. A. Smirnova, A. V. Korotun, R. A. Kulykovskyi

Abstract


The paper considers the problem of choosing the composition, structure, and size of spherical catalyst nanoparticles for carrying out plasmon-induced polymerization reactions. The concept of reducing the activation energy of the reaction in the presence of a catalyst and, accordingly, increasing the rate of a chemical reaction during heating due to the excitation of surface plasmon resonance is presented. Using the Drude model for the dielectric function, relationships were obtained for the frequency dependences of such characteristics as the real and imaginary parts of the polarizability, heating and the rate of chemical reactions when monometallic and bimetallic nanoparticles are used as catalysts, as well as the amplification of fields in their vicinity. The concepts developed in this work take into account the classical size dependence of the effective electron relaxation rate in monometallic and bimetallic nanoparticles under the assumption of diffuse scattering of electrons. Changes in the positions of the maxima of the imaginary part of the polarizability, heating, and reaction rate are analyzed with a change in the radii of monometallic and bimetallic nanoparticles. It is shown that the maxima of the dependences under study correspond to dipole surface plasmon resonances, and their number depends on the particle morphology. Changes in the amplification of electric fields in the vicinity of nanoparticles of different morphology have been studied. It has been found that the enhancement of the fields in all considered cases is maximum on the surface of the nanoparticle and decreases with distance from it. Practical recommendations are formulated regarding the size, composition and structure of nanoparticles for plasmon catalysis, which provide the highest rates of chemical reactions. Thus, all obtained frequency dependences have one maximum for monometallic and two maxima for bimetallic nanoparticles.


Keywords


polarizability; field enhancement; polymerization reaction rate; catalysis; surface plasmon resonance; monometallic and bimetallic nanoparticles

Full Text:

PDF

References


1. Maier S.A. Plasmonics: Fundamentals and Applications. (Springer-Verlag, 2007). https://doi.org/10.1007/0-387-37825-1

2. Hartland G.V. Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 2011. 111(6): 3858. https://doi.org/10.1021/cr1002547

3. Boltasseva A., Atwater H.A. Low-loss plasmonic metamaterials. Science. 2011. 331(6015): 290. https://doi.org/10.1126/science.1198258

4. Bohren C.F., Huffman D.R. Absorption and Scattering of Light by Small Particles. (N.Y.: Wiley-VCH, 1998). https://doi.org/10.1002/9783527618156

5. Kelly K.L., Coronado E., Zhao L.L., Schatz G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B. 2003. 107: 668. https://doi.org/10.1021/jp026731y

6. Grady N.K., Halas N.J., Nordlander P. Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles. Chem. Phys. Lett. 2004. 399: 167. https://doi.org/10.1016/j.cplett.2004.09.154

7. Grigorchuk N.I. Size and shape effect on optical conductivity of metal nanoparticles. EPL. 2018. 121(6): 67003. https://doi.org/10.1209/0295-5075/121/67003

8. Smirnova N.A., Korotun A.V., Titov I.M. An influence of the adsorbed molecules layer on the localized surface plasmons in the spherical metallic nanoparticles. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(4): 476. https://doi.org/10.15407/hftp13.04.476

9. Jain P.K., Lee K.S., El-Sayed I.H., El-Sayed M.A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B. 2006. 110(14): 7238. https://doi.org/10.1021/jp057170o

10. Korotun A.V., Pavlyshche N.I. Cross sections for absorption and scattering of electromagnetic radiation by ensembles of metal nanoparticles of different shapes. Phys. Met. Metall. 2021. 122: 941. https://doi.org/10.1134/S0031918X21100057

11. Schuller J.A., Barnard E.S., Cai W., Jun Y.C., White J.S., Brongersma M.L. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010. 9: 193. https://doi.org/10.1038/nmat2630

12. Moskovits M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 1985. 57(3): 783. https://doi.org/10.1103/RevModPhys.57.783

13. Langer J., Jimenez de Aberasturi D., Aizpurua J., Alvarez-Puebla R.A., Auguié B., Baumberg J.J., Bazan G.C., Bell S.E.J., Boisen A., Brolo A.G., Choo J., Cialla-May D., Deckert V., Fabris L., Faulds K., Javier García de Abajo F., Goodacre R., Graham D., Haes A.J., Haynes Ch.L., Huck Ch., Itoh T., Käll M., Kneipp J., Kotov N.A., Kuang H., Le Ru E.C., Lee H.K., Li J.-F., Yi Ling X., Maier S.A., Mayerhöfer T., Moskovits M., Murakoshi K., Nam J.-M., Nie Sh., Ozaki Yu., Pastoriza-Santos I., Perez-Juste J., Popp J., Pucci A., Reich S., Ren B., Schatz G.C., Shegai T., Schlücker S., Tay Li-Lin, Thomas K.G., Tian Zh.-Q., Van Duyne R.P., Vo-Dinh T., Wang Yu., Willets K.A., Xu Ch., Xu H., Xu Y., Yamamoto Y.S., Zhao B., Liz-Marzán L.M. Present and future of surface-enhanced Raman scattering. ACS Nano. 2020. 14(1): 28. https://doi.org/10.1021/acsnano.9b04224

14. Stewart M.E., Anderton C.R., Thompson L.B., Maria J., Gray S.K., Rogers J.A., Nuzzo R.G. Nanostructured plasmonic sensors. Chem. Rev. 2008. 108(2): 494. https://doi.org/10.1021/cr068126n

15. de Aberasturi D.J., Serrano-Montes A.B., Liz-Marzán L.M. Modern Applications of Plasmonic Nanoparticles: From Energy to Health. Adv. Optic. Mater. 2015. 3(5): 602. https://doi.org/10.1002/adom.201500053

16. Lal S., Link S., Halas N.J. Nano-optics from sensing to waveguiding. Nat. Photonics. 2007. 1: 641. https://doi.org/10.1038/nphoton.2007.223

17. Liu L., Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2008. 118(10): 4981. https://doi.org/10.1021/acs.chemrev.7b00776

18. Watanabe K., Menzel D., Nilius N., Freund H.-J. Photochemistry on metal nanoparticles. Chem. Rev. 2006. 106(10): 4301. https://doi.org/10.1021/cr050167g

19. Campbell C.T., Parker S.C., Starr D.E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science. 2002. 298(5594): 811. https://doi.org/10.1126/science.1075094

20. Naldoni A., Riboni F., Guler U., Boltasseva A., Shalaev V.M., Kildishev A.V. Solar-powered plasmon-enhanced heterogeneous catalysis. Nanophotonics. 2016. 5(1): 112. https://doi.org/10.1515/nanoph-2016-0018

21. Bonn M., Funk S., Hess Ch., Denzler D.N., Stampfl C., Scheffler M., Wolf M., Ertl G. Phonon-versus electron-mediated desorption and oxidation of CO on Ru(0001). Science. 1999. 285(5430): 1042. https://doi.org/10.1126/science.285.5430.1042

22. Tan S., Argondizzo A., Ren J., Liu L., Zhao J., Petek H. Plasmonic coupling at a metal/semiconductor interface. Nat. Photonics. 2017. 11: 806. https://doi.org/10.1038/s41566-017-0049-4

23. Hou W., Cronin S.B. A review of surface plasmon resonance-enhanced photocatalysis. Adv. Fun. Mater. 2013. 23(13): 1612. https://doi.org/10.1002/adfm.201202148

24. Boerigter C., Aslam U., Linic S. Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials. ACS Nano. 2016. 10(6): 6108. https://doi.org/10.1021/acsnano.6b01846

25. Brooks J.L., Warkentin C.L., Saha D., Keller E.L., Frontiera R.R. Toward a mechanistic understanding of plasmon-mediated photocatalysis. Nanophotonics. 2018. 7(11): 1697. https://doi.org/10.1515/nanoph-2018-0073

26. Hövel H., Fritz S., Hilger A., Kreibig U., Vollmer M. Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys. Rev. B. 1993. 48: 18178. https://doi.org/10.1103/PhysRevB.48.18178

27. Olson J., Dominguez-Medina S., Hoggard A., Wang L.-Y., Chang W.-S., Link S. Optical characterization of single plasmonic nanoparticles. Chem. Soc. Rev. 2015. 44(1): 40. https://doi.org/10.1039/C4CS00131A

28. Foerster B., Joplin A., Kaefer A., Celiksoy S., Link S., Sönnichsen C. Chemical interface damping depends on electrons reaching the surface. ACS Nano. 2017. 11(3): 2886. https://doi.org/10.1021/acsnano.6b08010

29. Seemala B., Therrien A.J., Lou M., Li K., Finzel K., Qi J., Nordlander P., Christopher P. Plasmon-mediated catalytic O2 dissociation on ag nanostructures: Hot electrons or near Fields? ACS Energy Lett. 2019. 4(8): 1803. https://doi.org/10.1021/acsenergylett.9b00990

30. Trinh T.T., Sato R., Sakamoto M., Fujiyoshi Y., Haruta M., Kurata H., Teranishi T. Visible to near-infrared plasmon-enhanced catalytic activity of Pd hexagonal nanoplates for the Suzuki coupling reaction. Nanoscale. 2015. 7(29): 12435. https://doi.org/10.1039/C5NR03841C

31. Yang Q., Xu Q., Yu S.H., Jiang H.L. Pd Nanocubes@ZIF‐8: Integration of Plasmon‐Driven Photothermal Conversion with a Metal-Organic Framework for Efficient and Selective Catalysis. Angew. Chem. 2016. 128(11): 3749. https://doi.org/10.1002/ange.201510655

32. Nguyen M., Kherbouche I., Gam-Derouich S., Ragheb I., Lau-Truong S., Lamouri A., Mangeney C. Regioselective surface functionalization of lithographically designed gold nanorods by plasmon-mediated reduction of aryl diazonium salts. Chem. Commun. 2017. 53(82): 11364. https://doi.org/10.1039/C7CC05974D

33. Deeb C., Ecoffet C., Bachelot R., Plain J., Bouhelier A., Soppera O. Plasmon-based free-radical photopolymerization: effect of diffusion on nanolithography processes. J. Am. Chem. Soc. 2017. 133(27): 10535. https://doi.org/10.1021/ja201636y

34. Wang Y., Wang S., Zhang S., Scherman O.A., Baumberg J.J., Ding T., Xu H. Plasmon-directed polymerization: Regulating polymer growth with light. Nano Res. 2018. 11(12): 6384. https://doi.org/10.1007/s12274-018-2163-0

35. Guselnikova O., Váňa J., Phuong L.T., Panov I., Rulíšek L., Trelin A., Postnikov P., Švorčík V., Andris E., Lyutakov O. Plasmon-assisted click chemistry at low temperature: an inverse temperature effect on the reaction rate. Chem. Sci. 2021. 12: 5591. https://doi.org/10.1039/D0SC05898J

36. Guselnikova O., Olshtrem A., Kalachyova Y., Panov I., Postnikov P., Švorčík V., Lyutakov O. Plasmon Catalysis on Bimetallic Surface-Selective Hydrogenation of Alkynes to Alkanes or Alkenes. J. Phys. Chem. C. 2018. 122(46): 26613. https://doi.org/10.1021/acs.jpcc.8b07398

37. Korotun A.V., Pogosov V.V. On the Calculation of Optical Characteristics and Dimensional Shifts of Surface Plasmons of Spherical Bimetallic Nanoparticles. Phys. Solid State. 2021. 63(1): 122. https://doi.org/10.1134/S1063783421010133

38. Korotun A.V., Koval A.O., Pogosov V.V. Optical parameters of bimetallic nanospheres. Ukr. J. Phys. 2021. 66(6): 518. https://doi.org/10.15407/ujpe66.6.518

39. Aslam U., Rao V.G., Chavez S., Linic S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 2018. 1: 656. https://doi.org/10.1038/s41929-018-0138-x

40. Linic S., Aslam U., Boerigter C., Morabito M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015. 14(6): 567. https://doi.org/10.1038/nmat4281

41. Gargiulo J., Berté R., Li Y., Maier S.A., Cortés E. From Optical to Chemical Hot Spots in Plasmonics. Acc. Chem. Res. 2019. 52(9): 2525. https://doi.org/10.1021/acs.accounts.9b00234

42. Ageev V.N. Desorption induced by electronic transitions. Prog. Surf. Sci. 1994. 47(1-2): 55. https://doi.org/10.1016/0079-6816(94)90014-0

43. Prodan E., Radloff C., Halas N.J., Nordlander P. A Hybridization Model for the Plasmon Response of Complex Nanostructures. Science. 2003. 302(5644): 419. https://doi.org/10.1126/science.1089171




DOI: https://doi.org/10.15407/hftp15.02.171

Copyright (©) 2024

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.