Chemistry, Physics and Technology of Surface, 2024, 15 (2), 200-211.

Modified silica gel and cation-exchanger based on activated carbon for fullerenes separation



DOI: https://doi.org/10.15407/hftp15.02.200

V. A. Diamant, L. M. Rozhdestvenska, K. O. Kudelko

Abstract


Fullerenes are interesting objects of research in view of their promising use as a nano-sized additive to coatings, films, adsorbents, as well as active components in medicine, pharmacy, cosmetology. This paper considers the possibility of modifying commercial adsorbents - silica gel and cation-exchanger based on activated carbon with available and inexpensive linear carbon radicals. Behentrimonium chloride (C22H45(CH3)3N+Cl-) and cetyl alcohol (C16H33OН) were chosen as the latter. The obtained adsorbents were compared with a commercial sample of silica gel modified with a linear hydrocarbon radical –C18Н37. The adsorbents were described by the methods of IR spectroscopy, thermogravimetry, the main characteristics of the porous structure were determined by the method of low-temperature adsorption-desorption of nitrogen. Modification of adsorbents based on silica gel leads to a decrease in the specific surface area to 202.4 and 236.5 m2/g and the total pore volume to 0.32 and 0.39 cm3/g, which is almost 2 half source material. Increasing the fraction of micropores contributes to better separation rates of large molecules. Treatment of cation-exchanger based on activated carbon by cation modifier leads to a significant decrease in the specific surface area, as well as to an increase in the size of pores with the predominant formation of mesopores.

It is shown that the modification of silica gel is carried out both through silanol and siloxane groups, in contrast to the commercial sample of silica gel. The approximate number of modifier groups on the surface of the original SiO2 matrix was estimated, which is one modifier group ~ per 11 SiO2 molecules.

To study the behavior of adsorption of C60, C70 fullerenes and their mixtures on adsorbents, column experiments were carried out with changes in the geometrical parameters of the column and the initial concentrations of the solutions. The results showed that the modified silica gels are potential adsorbents for the separation of a mixture of fullerenes with a ratio of 65/25. Silica gel modified with cetyl alcohol C16H33OH showed the best separation efficiency. By the help of an adsorbent, it is possible to separate C60 - 90.52 % from a less concentrated solution and 87.26 % from a more concentrated solution. To increase the purity of the product, it is necessary to pass the solution through the sorbent 2–3 times.

The competitive capability of the proposed modified silica gels, together with economic efficiency, ease of modification, and the possibility of fullerene separation characterize the proposed adsorbents as potential materials for practical application. Due to the significantly lower cost and simpler manufacturing methods, the proposed adsorbents can be used for separation at a large scale.


Keywords


fullerenes; С60; С70; separation; silica gel; activated carbon; behentrimonium chloride; cetyl alcohol

Full Text:

PDF

References


1. Hammond G., Kuck V. Fullerenes: synthesis, properties, and chemistry of large carbon clusters. (Washington: ACS, 1992). https://doi.org/10.1021/bk-1992-0481

2. Hirsch A. The chemistry of the fullerenes. (Germany: Wiley-VCH Verlag GmbH, 1994). https://doi.org/10.1002/9783527619214

3. Acquah S., Penkova A., Markelov D., Semisalova A.S. The beautiful molecule: 30 years of C60 and its derivatives. ECS J. Solid State Sci. Technol. 2017. 6(6): 3155. https://doi.org/10.1149/2.0271706jss

4. Chaudhery M., Rüstem K. Use of nanomaterials for environmental analysis in modern environmental analysis techniques for pollutants. (Elsevier, 2020).

5. So-Ryong C., Ernest M., Mark R. Possible applications of fullerene nanomaterials in water treatment and reuse in nanotechnology applications for clean water. Micro and Nano Technol. 2009: 167. https://doi.org/10.1016/B978-0-8155-1578-4.50022-6

6. Kamat P., Haria M., Hotchandani S. C60 cluster as an electron shuttle in a Ru(II)-polypyridyl sensitizer-based photochemical solar cell. J. Phys. Chem. B. 2004. 108(17): 5166. https://doi.org/10.1021/jp0496699

7. Mize S. Nanotechnology opportunity report. (London: CMP-Cientifica, 2002).

8. Ros T., Prato M. Medicinal chemistry with fullerenes and fullerene derivatives. Chem. Commun. 1999. 21(8): 663. https://doi.org/10.1039/a809495k

9. Bottero J.-Y., Rose J., Wiesner M. Nanotechnologies: tools for sustainability in a new wave of water treatment processes. Integr. Environ. Assess. Manage. 2006. 2(4): 391. https://doi.org/10.1897/1551-3793(2006)2[391:NTFSIA]2.0.CO;2

10. Kausar A. Potential of polymer/fullerene nanocomposites for anticorrosion applications in the biomedical field. J. Compos. Sci. 2022. 6(12): 394. https://doi.org/10.3390/jcs6120394

11. Shan C., Yen H., Wu K., Lin Q., Zhou M. Functionalized fullerenes for highly efficient lithium ion storage: Structure-property-performance correlation with energy implications. Nano Energy. 2017. 40: 327. https://doi.org/10.1016/j.nanoen.2017.08.033

12. Sapurina I., Sapurina I., Mokeev M., Lavrentev V., Zgonnik V., Trchová M., Hlavatá D., Stejskal J. Polyaniline complex with fullerene C60. Eur. Polym. J. 2000. 36(11): 2321. https://doi.org/10.1016/S0014-3057(00)00012-4

13. Saim S., Kuo K.C., Stalling D.L. Supercritical fluid extraction of fullerenes C60 and C70 from carbon soot. Sep. Sci. Technol. 1993. 28(8): 1509. https://doi.org/10.1080/01496399308018055

14. Scrivens W.A., Bedworth P.V., Tour J.M. Purification of gram quantities of C60. A new inexpensive and facile method. J. Am. Chem. Soc. 1992. 114(20): 7914. https://doi.org/10.1021/ja00046a051

15. Nawrocki J., Rigney M., McCormick A., Carr P.W. Chemistry of zirconia and its use in chromatography. J. Chromatogr. A. 1993. 657(2): 229. https://doi.org/10.1016/0021-9673(93)80284-F

16. Schafer W.A., Carr P.W. Chromatographic characterization of a phosphate-modified zirconia support for bio-chromatographic applications. J. Chromatogr. A. 1991. 587(2): 149. https://doi.org/10.1016/0021-9673(91)85151-5

17. Wang L., Shi C., Pan L., Zhang X., Zou J. Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: a review. Nanoscale. 2020. 12(8): 4790. https://doi.org/10.1039/C9NR09274A

18. Da'na E. Adsorption of heavy metals on functionalized-mesoporous silica: A review. Microporous Mesoporous Mater. 2017. 247: 145. https://doi.org/10.1016/j.micromeso.2017.03.050

19. Cheng Y., Chuah G.K. The synthesis and applications of α-zirconium phosphate. Chin. Chem. Lett. 2020. 31(2): 307. https://doi.org/10.1016/j.cclet.2019.04.063

20. Dzyazko Y.S., Rozhdestvenska L.M., Palchik A.V. Ion-exchange properties and mobility of Cu2+ ions in zirconium hydrophosphate ion exchangers. Sep. Purif. Technol. 2005. 45(2): 141. https://doi.org/10.1016/j.seppur.2005.03.005

21. Dzyazko Yu.S., Rozhdestvenskaya L.M., Pal'chik A.V. Recovery of nickel ions from dilute solutions by electrodialysis combined with ion exchange. Russ. J. Appl. Chem. 2005. 75(3): 414. https://doi.org/10.1007/s11167-005-0307-y

22. Maji S., Ghosh A., Gupta K., Ghosh A., Ghorai U., Santra A., Sasikumar P., Ghosh U.Ch. Efficiency evaluation of arsenic(III) adsorption of novel graphene oxide@iron-aluminium oxide composite for the contaminated water purification. Sep. Purif. Technol. 2018. 197: 388. https://doi.org/10.1016/j.seppur.2018.01.021

23. Myronchuk V., Zmievskii Y., Dzyazko Y., Rozhdestveska L., Zakharov V., Bildyukevich A. Electrodialytic whey demineralization involving polymer-inorganic membranes, anion exchange resin and graphene-containing composite. Acta Periodica Technologica. 2019. 50: 163. https://doi.org/10.2298/APT1950163M

24. Perlova O.V., Dzyazko Yu.S., Pal'chik A.V., Ivanova I.S., Perlova N.O., Danilov M.O., Rusetskii I.A., Kolbasov G.Ya., Dzyazko A.G. Composites based on zirconium dioxide and zirconium hydrophosphate containing graphene-like additions for removal of U(VI) compounds from water. Appl. Nanosci. 2020. 10: 4591. https://doi.org/10.1007/s13204-020-01313-1

25. Perlova O.V., Dzyazko Yu.S., Pal'chik O.V., Martovyi I.S. Hydrated titanium dioxide modified with potassium cobalt hexacyanoferrate (II) for sorption of cationic and anionic complexes of uranium (VI). Appl. Nanosci. 2022. 12(3): 651. https://doi.org/10.1007/s13204-021-01721-x

26. Rozhdestvenska L.M., Chaban M.O., Dzyazko Yu.S., Palchik O.V., Dzyazko O.G. Formation of lithium-selective sorbent in nanoreactors of the support based on titanium dioxide. Appl. Nanosci. 2022. 12(4): 1112. https://doi.org/10.1007/s13204-021-01832-5

27. Chaban M.O., Rozhdestvenska. L.M., Palchyk O.V., Dzyazko Y.S., Dzyazko O.G. Structural characteristics and sorption properties of lithium-selective composite materials based on TiO2 and MnO2. Appl. Nanosci. 2019. 9(5): 1037. https://doi.org/10.1007/s13204-018-0749-1

28. Dzyazko Y.S., Ponomareva L.N., Vol'fkovich Y.M., Sosenkin V.E., Belyakov V.N. Conducting properties of a gel ionite modified with zirconium hydrophosphate nanoparticles. Russ. J. Electrochem. 2013. 49: 209. https://doi.org/10.1134/S1023193513030075

29. Dzyazko Y.S., Ponomareva L.N., Volfkovich Y.M., Sosenkin V.E. Effect of the porous structure of polymer on the kinetics of Ni2+ exchange on hybrid inorganic-organic ionites. Russ. J. Phys. Chem. A. 2012. 86(6): 913. https://doi.org/10.1134/S0036024412060088

30. Maltseva T.V., Kolomiets E.O., Dzyazko Yu.S., Scherbakov S. Composite anion-exchangers modified with nanoparticles of hydrated oxides of multivalent metals. Appl. Nanosci. 2019. 9(5): 997. https://doi.org/10.1007/s13204-018-0689-9

31. Dzyazko Y., Zakharov V., Kolomiiets Y., Kudelko K. Composite ion-exchanges for the recycling of liquid waste of dairy industry. Ukr. Chem. J. 2020. 86(5): 38. https://doi.org/10.33609/2708-129X.86.5.2020.38-52

32. Bashir A., Ahad S., Malik L.A., Qureashi A., Manzoor T., Dar G.N., Pandith A.H. Revisiting the old and golden inorganic material, zirconium phosphate: synthesis, intercalation, surface functionalization, and metal ion uptake. Ind. Eng. Chem. Res. 2020. 59(52): 22353. https://doi.org/10.1021/acs.iecr.0c04957

33. Ambrożewicz D., Ciesielczyk F., Nowacka M., Karasiewicz J., Piasecki A., Maciejewski H., Jesionowski T. Fluoroalkylsilane versus Alkylsilane as hydrophobic agents for silica and silicates. J. Nanomaterials. 2013. 2013: 631938. https://doi.org/10.1155/2013/631938

34. Akhavan B., Jarvis K., Majewski P. Hydrophobic plasma polymer coated silica particles for petroleum hydrocarbon removal. ACS Appl. Mater. Interfaces. 2013. 5(17): 8563. https://doi.org/10.1021/am4020154

35. Cashin V.B., Eldridge D.S., Yu A., Zhao D. Surface functionalization and manipulation of mesoporous silica adsorbents for improved removal of pollutants: a review. Environ. Sci. Water Res. Technol. 2018. 4(2): 110. https://doi.org/10.1039/C7EW00322F

36. Patent US 5310532 Tour J.M., Scrivens W.A., Bedworth P.V. Purification of fullerenes. 1994.

37. Patent US 5662876 Tour J.M., Scrivens W.A., Bedworth P.V. Purification of fullerenes. 1997.

38. Patent US 5904852 Tour J.M., Scrivens W.A., Rawlett A.M. Process for purifying fullerenes. 1999.

39. WO N 9204279 Boltstren N.N., Oychenko V.M., Oleynik S.V. Method of production of fullerene C60. 1992. [in Russian].

40. RU N 2259942 Rasnetsov L.D., Shvartman Y.Yu., Karnatsevich V.L. Installation for removing fullerene soot. 2005. [in Russian].

41. Kui S., Yik C., Ka M., Wibowo C. Separation of fullerenes C60 and C70 using a crystallization-based process. AIChE J. 2010. 56(7): 1801. https://doi.org/10.1002/aic.12105

42. Mchedlov-Petrossyan N. Fullerenes in liquid media: an unsettling intrusion into the solution chemistry. Chem. Rev. 2013. 113(7): 5149. https://doi.org/10.1021/cr3005026

43. RU N 2224714 Boltstren N.N., Oychenko V.M., Oleynik S.V. Method for producing fullerene C60. 2004. [in Russian].

44. Patent RU Patent 2327635 Boltstren N.N., Oychenko V.M., Oleynik S.V. Method for producing fullerene C60. 2008. [in Russian].

45. Atwood J., Koutsantonist G., Rastont C. Purification of C60 and C70 by selective complexation with calixarenes, Letters to Nature. 1997. 368: 229. https://doi.org/10.1038/368229a0

46. Yashin Y., Yashin A. High performance liquid chromatography. Status and prospects. Ross. Chem. J. 2003. XLVII (1): 64. [in Russian].

47. Krokhina O., Postnov V. Mineral-carbon sorbents for chromatographic separation of fullerenes. Vestnik of St. PSU. 2010. 4(2): 79. [in Russian].

48. Ohta H., Jinno K., Saito Y., Fetzer J.C., Biggs W.R., Pesek J.J., Matyska M.T., Chen Y.-L. Effect of temperature on the mechanism of retention of fullerenes in liquid chromatography using various alkyl bonded stationary phases. Chromatographia. 1996. 42: 56. https://doi.org/10.1007/BF02271056

49. Patent RU 2105715C1 Trikhleb V.A., Trikhleb L.M. Method for producing carbon cation exchanger. 1998. [in Russian].

50. Cashin V., Eldridge D., Yu A., Zhao D. Surface functionalization and manipulation of mesoporous silica adsorbents for improved removal of pollutants: a review. Environ. Sci.: Water Res. Technol. 2018. 4(2): 110. https://doi.org/10.1039/C7EW00322F

51. Çiçek B., Kenar A., Nazir H. Simultaneous determination of c60 and C70 fullerenes by a spectrophotometric method. Fullerene Sci. Technol. 2001. 9(1): 103. https://doi.org/10.1081/FST-100000169

52. Anikina N., Shchur D., Zaginaychenko S., Zolotarenko A., Milto K., Krivushchenko O. Determination of the ratio of fullerenes C60 and C70 by absorption spectroscopy. In: Proceedings of IX International Conference "Hydrogen Material Science and Chemistry of Metal Hydrides", Ukraine, September 5-11, 2005: 857. [in Russian].

53. Patent UA 48455 Trefilov V.I., Shchur D.V., Zaginaychenko S.Yu., Duboviy A.G., Pishuk V.K., Tarasov B.P., Shulga Y.M., Rogozinsky A.A. Method for producing fullerenes from solutions in toluene. 2004. [in Ukrainian].

54. Patent UA 66463 Lytvynenko Yu.V. An apparatus for preparing fullerene nanostructural materials. 2004. [in Ukrainian].

55. Sadegh K., Javad F., Fatemeh M., Maryam F. Detection and quantification of food colorant adulteration in saffron sample using chemometric analysis of FT-IR spectra. RSC Adv. 2016. 6: 23085. https://doi.org/10.1039/C5RA25983E

56. Electronic Supplementary Material (ESI) for RSC Advances. The Royal Society of Chemistry. 2018.

57. Sun D.-H., Lu P., Zhang J.-L., Liu Y.-L., Ni J.-Z. Synthesis of the Fe3O4@SiO2@SiO2-Tb(PABA)3 luminomagnetic microspheres. J. Nanosci. Nanotechnol. 2011. 11: 9774. https://doi.org/10.1166/jnn.2011.5265

58. Musić S., Filipović-Vinceković N., Sekovanić L. Precipitation of amorphous SiO2 particles and their properties. Braz. J. Chem. Eng. 2011. 28(1): 89. https://doi.org/10.1590/S0104-66322011000100011

59. Profiles of drug substances, excipients and related methodology, 1st Edition Editor: Harry Brittain Hardcover. Academic Press, 2012. 37: 464.

60. Tran T., Anh-Pham T., Phung M., Thoa-Nguyen T., Tran V. Synthesis of amorphous silica and sulfonic acid functionalized silica used as reinforced phase for polymer electrolyte membrane. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2013. 4(4): 045007. https://doi.org/10.1088/2043-6262/4/4/045007

61. Okuno M., Zotov N., Schmücker, M., Schneider H. Structure of SiO2-Al2O3 glasses: Combined X-ray diffraction, IR and Raman studies. J. Non-Cryst. Solids. 2005. 351(12-13): 1032. https://doi.org/10.1016/j.jnoncrysol.2005.01.014

62. Jesionowski T., Krysztafkiewicz A. Preparation of the hydrophilic/hydrophobic silica particles. Colloids Surf., A. 2002. 207: 49. https://doi.org/10.1016/S0927-7757(02)00137-1




DOI: https://doi.org/10.15407/hftp15.02.200

Copyright (©) 2024 V. A. Diamant, L. M. Rozhdestvenska, K. O. Kudelko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.