Chemistry, Physics and Technology of Surface, 2024, 15 (2), 212-220.

Study on phase characteristics of heterostructure por-Ga2O3/GaAs



DOI: https://doi.org/10.15407/hftp15.02.212

S. S. Kovachov, I. T. Bohdanov, D. S. Drozhcha, K. M. Tikhovod, V. V. Bondarenko, I. G. Kosogov, Ya. O. Suchikova

Abstract


The synthesis and characterization of heterostructure por-Ga2O3/GaAs represent a crucial advancement in nanomaterials, particularly in optoelectronic applications. Employing a two-stage electrochemical etching methodology, this research has elucidated the precise conditions required to fabricate such a heterostructure. The initial stage involves etching monocrystalline gallium arsenide (GaAs) using an aqueous nitric acid solution as the electrolyte. This process is governed by the redox reactions at the crystal-electrolyte interface, where GaAs are partially oxidized and selectively etched.

The second stage introduces ethanol into the electrolytic solution. This chemical addition serves a dual purpose: Firstly, it modulates the electrochemical environment, allowing for controlling pore morphology in GaAs. Secondly, it facilitates the etching of the resultant oxide layer, which predominantly consists of gallium oxide (Ga2O3). The formation of this oxide layer can be attributed to the oxidation of GaAs, driven by the electrochemical potentials and resulting in the deposition of reaction by-products on the substrate surface.

The fabricated nanocomposite was comprehensively characterized using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDX), and Raman Spectroscopy. SEM imaging revealed a range of agglomerated nanostructures dispersed across the surface, with dimensions ranging from 8–25 μm, 1–1.5 μm, and 70–100 nm. These observations suggest a hierarchical pore structure indicative of a complex etching mechanism modulated by the electrolyte composition.

Raman spectroscopic analysis corroborated the presence of various phases in the heterostructure. Signals corresponding to bulk GaAs, serving as the substrate, were distinguishable. In addition, peaks indicative of porous GaAs and porous Ga2O3 were observed. A cubic phase in the Ga2O3 layer was particularly noteworthy, suggesting a higher degree of crystallinity. Notably, the absence of Raman-active modes associated with internal stresses implies that the fabricated heterostructure is of high quality.


Keywords


Ga2O3; GaAs; electrochemical etching; oxidation; pores; heterostructures

Full Text:

PDF

References


1. Wang Z., Cheng K., Sun J., Wang X., Wang G., Liu X., Ma X. Ultra-Wide Bandgap Quasi Two-Dimensional β-Ga2O3 with Highly In-Plane Anisotropy for Power Electronics. Appl. Surf. Sci. 2023. 619: 156771.https://doi.org/10.1016/j.apsusc.2023.156771

2. Liu F., Zhao X., Li Y., Liu C. Photoluminescence properties and DFT simulations of the Cr ion-implanted (100)-oriented β-Ga2O3 single crystals. J. Alloys Compd. 2023. 946: 169301. https://doi.org/10.1016/j.jallcom.2023.169301

3. Luchechko A., Vasyltsiv V., Kostyk L., Tsvetkova O., Popov A.I. Shallow and deep trap levels in X-ray irradiated β-Ga2O3: Mg. Nucl. Instrum. Methods Phys. Res., Sect. B. 2019. 441: 12. https://doi.org/10.1016/j.nimb.2018.12.045

4. Suchikova Y., Lazarenko A., Kovachov S., Usseinov A., Karipbaev Z., Popov A.I. Formation of porous Ga2O3/GaAs layers for electronic devices. In: 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). (2022, February). IEEE. pp. 01-04. https://doi.org/10.1109/TCSET55632.2022.9766890

5. Chiang Jung-Lung, Bharath Kumar Yadlapalli, Mu-I Chen, Dong-Sing Wuu. A Review on Gallium Oxide Materials from Solution Processes. Nanomaterials. 2022. 12(20): 3601. https://doi.org/10.3390/nano12203601

6. Miao Y., Liang B., Tian Y., Xiong T., Sun S., Chen C. Epitaxial growth of β-Ga2O3 nanowires from horizontal to obliquely upward evolution. Vacuum. 2021. 192: 110444. https://doi.org/10.1016/j.vacuum.2021.110444

7. Tang X., Li K.H., Zhao Y., Sui Y., Liang H., Liu Z., Li X. Quasi-Epitaxial Growth of β-Ga2O3-Coated Wide Band Gap Semiconductor Tape for Flexible UV Photodetectors. ACS Appl. Mater. Interfaces. 2021. 14(1): 1304. https://doi.org/10.1021/acsami.1c15560

8. Nakanishi M., Wong M.H., Yamaguchi T., Honda T., Higashiwaki M., Onuma T. Effect of thermal annealing on photoexcited carriers in nitrogen-ion-implanted β-Ga2O3 crystals detected by photocurrent measurement. AIP Adv. 2021. 11(3): 035237. https://doi.org/10.1063/5.0031937

9. Lee J., Kim H., Gautam L., He K., Hu X., Dravid V.P., Razeghi M. Study of phase transition in MOCVD grown Ga2O3 from κ to β phase by ex situ and in situ annealing. Photonics. 2021. 8(1): 17. https://doi.org/10.3390/photonics8010017

10. Xie Y., Nie Y., Zheng Y., Luo Y., Zhang J., Yi Z., Wu P. The influence of β-Ga2O3 film thickness on the optoelectronic properties of β-Ga2O3@ ZnO nanocomposite heterogeneous materials. Mater. Today Commun. 2021. 29: 102873. https://doi.org/10.1016/j.mtcomm.2021.102873

11. Vequizo J.J.M.; Ichimura M. Electrodeposition of Ga-O Thin Films from Aqueous Gallium Sulfate Solutions. Jpn. J. Appl. Phys. 2013. 52: 075503. https://doi.org/10.7567/JJAP.52.075503

12. Vambol S.O., Bohdanov I.T., Vambol V.V., Onyschenko S.V. Formation of filamentary structures of oxide on the surface of monocrystalline gallium arsenide. Journal of Nano-and Electronic Physics. 2017. 9(6): 06016. https://doi.org/10.21272/jnep.9(6).06016

13. Usseinov A., Koishybayeva Z., Akilbekov A., Abuova F.U., Kotomin E., Popov A.I. Ab initio calculations of native defects IN β-Ga2O3. Latv. J. Phys. Tech. Sci. 2021. 58(2): 3.

14. Usseinov A., Platonenko A., Koishybayeva Z., Akilbekov A., Zdorovets M., Popov A.I. Pair vacancy defects in β-Ga2O3 crystal: Ab initio study. Opt. Mater.: X. 2022. 16: 100200. https://doi.org/10.1016/j.omx.2022.100200

15. Lu Y.M., Li C., Chen X.H., Han S., Cao P.J., Jia F., Zhu D.L. Preparation of Ga2O3 thin film solar-blind photodetectors based on mixed-phase structure by pulsed laser deposition. Chin. Phys. B. 2019. 28(1): 018504. https://doi.org/10.1088/1674-1056/28/1/018504

16. Yi G., Jeon S., Kwon Y.W., Park J., Nguyen D.A., Sandeep C.S., Kim Y.J. Enhanced third harmonic generation in ultrathin free-standing β-Ga2O3 nanomembranes: study on surface and bulk contribution. Nanoscale. 2022. 14(1): 175. https://doi.org/10.1039/D1NR06259J

17. Zheng X.Q., Xie Y., Lee J., Jia Z., Tao X., Feng P.X.L. Beta gallium oxide (β-Ga2O3) nanoelectromechanical transducer for dual-modality solar-blind ultraviolet light detection. APL Mater. 2019. 7(2): 022523. https://doi.org/10.1063/1.5054625

18. Kokubun Y., Miura K., Endo F., Nakagomi S. Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors. Appl. Phys. Lett. 2007. 90: 2. https://doi.org/10.1063/1.2432946

19. Sinha G., Ganguli D., Chaudhuri S. Crystallization and optical properties of finite sized β-Ga2O3 in sol-gel derived Ga2O3: SiO2 nanocomposites. J. Phys. Condens. Matter. 2006. 18: 11167. https://doi.org/10.1088/0953-8984/18/49/010

20. Nikolaev V.I., Maslov V., Stepanov S.I., Bougrov V.E., Romanov A.E. Growth and characterization of β-Ga2O3 crystals. J. Cryst. Growth. 2017. 457: 132. https://doi.org/10.1016/j.jcrysgro.2016.05.049

21. Cheng Z., Wheeler V.D., Bai T., Shi J., Tadjer M.J., Feygelson T., Graham S. Integration of polycrystalline Ga2O3 on diamond for thermal management. Appl. Phys. Lett. 2020. 116(6): 062105. https://doi.org/10.1063/1.5125637

22. Sychikova Y.O., Bogdanov I.T., Kovachov S.S. Influence of current density of anodizing on the geometric characteristics of nanostructures synthesized on the surface of semiconductors of A3B5 group and silicon. Funct. Mater. 2019. 27(1): 29. https://doi.org/10.15407/fm27.01.29

23. Suchikova J.A., Kidalov V.V., Sukach G.A. Blue shift of photoluminescence spectrum of porous InP. ECS Trans. 2009. 25(24): 59. https://doi.org/10.1149/1.3316113

24. Sychikova Y.O. Porous indium phosphide: Preparation and properties. Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques. 2016. 283. https://doi.org/10.1007/978-3-319-15266-0_28

25. Suohikova Y., Vambol S., Vambol V., Mozaffari N., Mozaffari N. Justification of the most rational method for the nanostructures synthesis on the semiconductors surface. J. Achiev. Mater. Manuf. Eng. 2019. 92(1-2), 19. https://doi.org/10.5604/01.3001.0013.3184

26. Kleimann P., Badel X., Linnros J. Toward the formation of three-dimensional nanostructures by electrochemical etching of silicon. Appl. Phys. Lett. 2005. 86: 183108. https://doi.org/10.1063/1.1924883

27. Yang X., Tong L., Wu L., Zhang B., Liao Z., Chen A., Zhou Y., Liu Y., Hu Y. Research progress of silicon nanostructures prepared by electrochemical etching based on galvanic cells. J. Phys. Conf. Ser. 2021. 2076(1): 012117. https://doi.org/10.1088/1742-6596/2076/1/012117

28. Zhang Y., Gao F., Wang D., Li Z., Wang X., Wang C., Du Y. Amorphous/crystalline heterostructure transition-metal-based catalysts for high-performance water splitting. Coord. Chem. Rev. 2023. 475: 214916. https://doi.org/10.1016/j.ccr.2022.214916

29. Yahaya M.Z., Nazeri M.F.M., Salleh N.A., Kurt A., Kheawhom S., Illés B., Mohamad A.A. Selective etching of lead-free solder alloys: A brief review. Mater. Today Commun. 2022. 33: 104520. https://doi.org/10.1016/j.mtcomm.2022.104520

30. Wang F., Wang X. Mechanisms in the solution growth of free-standing two-dimensional inorganic nanomaterials. Nanoscale. 2014. 6(12): 6398. https://doi.org/10.1039/c4nr00973h

31. Ogle K. Atomic emission spectroelectrochemistry: real-time rate measurements of dissolution, corrosion, and passivation. Corrosion. 2019. 75(12): 1398. https://doi.org/10.5006/3336

32. Shiota I., Miyamoto N., Nishizawa J. Passivation of GaAs surfaces by GaOxNy films and by multilayers. Surf. Sci. 1979. 86: 272. https://doi.org/10.1016/0039-6028(79)90404-7

33. Kwo J., Murphy D.W., Hong M., Opila R.L., Mannaerts J.P., Sergent A.M., Masaitis R.L. Passivation of GaAs using (Ga2O3)1−x(Gd2O3)x, 0⩽x⩽1.0 films. Appl. Phys. Lett. 1999. 75: 1116. https://doi.org/10.1063/1.124614

34. Dohy D., Lucazeau G., Revcolevschi A. Raman spectra and valence force field of single-crystalline β-Ga2O3 J. Solid State Chem. 1982. 45: 180. https://doi.org/10.1016/0022-4596(82)90274-2

35. Kranert C., Sturm C., Schmidt-Grund R., Grundmann M. Raman tensor elements of β-Ga2O3. Sci. Rep. 2016. 6(1): 1. https://doi.org/10.1038/srep35964

36. Gao Y.H., Bando Y., Sato T., Zhang Y.F., Gao X.Q. Synthesis, Raman scattering and defects of β-Ga2O3 nanorods. Appl. Phys. Lett. 2002. 81(12): 2267. https://doi.org/10.1063/1.1507835

37. Rao R., Rao A.M., Xu B., Dong J., Sharma S., Sunkara M.K. Blueshifted Raman Scattering and its Correlation with the [110] Growth Direction in Gallium Oxide Nanowires. J. Appl. Phys. 2005. 98: 094312. https://doi.org/10.1063/1.2128044

38. Yadav A., Fu B., Bonvicini S.N., Ly L.Q., Jia Z., Shi Y. β-Ga2O3 Nanostructures: Chemical Vapor Deposition Growth Using Thermally Dewetted Au Nanoparticles as Catalyst and Characterization. Nanomaterials (Basel). 2022. 12(15): 2589. https://doi.org/10.3390/nano12152589

39. Dohy D., Lucazeau G., Revcolevschi A. Raman spectra and valence force field of single-crystalline β Ga2O3. J. Solid State Chem. 1982. 45: 180. https://doi.org/10.1016/0022-4596(82)90274-2

40. Ochoa M.A., Maslar J.E., Bennett H.S. Extracting electron densities in n-type GaAs from Raman spectra: Comparisons with Hall measurements. J. Appl. Phys. 2020. 128(7): 10.1063. https://doi.org/10.1063/5.0011247

41. Hosein I.D., Hegde M., Jones P.D., Chirmanov V., Radovanovic P.V. Evolution of the Faceting, Morphology and Aspect Ratio of Gallium Oxide Nanowires Grown by Vapor-solid Deposition. J. Cryst. Growth. 2014. 396: 24. https://doi.org/10.1016/j.jcrysgro.2014.03.037

42. Onuma T., Fujioka S., Yamaguchi T., Itoh Y., Higashiwaki M., Sasaki K., Masui T., Honda T. Polarized Raman spectra in β-Ga2O3 single crystals. J. Cryst. Growth. 2014. 401: 330. https://doi.org/10.1016/j.jcrysgro.2013.12.061

43. Suchikova Y., Kovachov S., Bohdanov I. Formation of oxide crystallites on the porous GaAs surface by electrochemical deposition. Nanomaterials and Nanotechnology. 2022. 12(30): 184798042211273. https://doi.org/10.1177/18479804221127307

44. Brooks G.A., Rankin W.J. Solid-solution formation between arsenic and antimony oxides. Metallurgical Mater Trans B. 1994. 25(6): 865. https://doi.org/10.1007/BF02662768

45. Mikoushkin V.M., Bryzgalov V.V., Nikonov S.Y. Composition and band structure of the native oxide nanolayer on the ion beam treated surface of the GaAs wafer. Semiconductors. 2018. 52(5): 593. https://doi.org/10.1134/S1063782618050214

46. Quagliano L.G. Detection of As2O3 arsenic oxide on GaAs surface by Raman scattering. Appl. Surf. Sci. 2000. 153(4): 240. https://doi.org/10.1016/S0169-4332(99)00355-4




DOI: https://doi.org/10.15407/hftp15.02.212

Copyright (©) 2024 S. S. Kovachov, I. T. Bohdanov, D. S. Drozhcha, K. M. Tikhovod, V. V. Bondarenko, I. G. Kosogov, Ya. O. Suchikova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.