Фотокаталітична деградація деяких барвників у присутності механохімічно модифікованих оксидів ванадію і молібдену
Анотація
Ключові слова
Посилання
1. Centi G., Cavani F., Trifiro F. Selective Oxidation by Heterogeneous Catalysis. – New York: Kluwer/Plenum, 2001. – 505 p.
2. Zazhigalov V.A., Khalameida S.V., Litvin N.S., et al. Effect of the mechanochemical treatment of a V2O5/MoO3 oxide mixture on its properties // Kinetics Catal. – 2008. – V.49. – P. 692–701.
3. Eguchi M., Maki F., Kimura H.E., Takahashi K. Lithiation behavior of vanadium molyb-denum oxides // Electrochem. – 2000. – V.68. – P. 474–477.
4. Maia L., Yanga F., Zhaoa Y. et al. Molybdenum oxide nanowires: synthesis and properties // Mater. Today. – 2011. – V. 14. – P. 346–353.
5. Kosova N., Devyatkina E. On mechano-chemical preparation of materials with enhanced characteristics for lithium batteries // Solid State Ionics. – 2004. – V. 172. – P. 181–184.
6. Madhuri K.V., Naidu B.S., Hussain O.M. Optical absorption studies on (V2O5)1−x–(MoO3)x thin films // Mater. Chem. Phys. – 2002. – V. 77. – P. 22–26.
7. Reddy Ch.V.S., Yeo I.-H., Mho Sun-il. Synthesis of sodium vanadate nanosized materials for electrochemical applications // Phys. Chem. Solids. – 2008. – V. 69. – P. 1261–1264 .
8. Mho Sun-il. Quantitative analysis of adsorption and photocatalytic activity of vanadium-oxide gels and nanobelts // J. Korean. Phys. Soc. – 2009. – V. 55. – P. 2447–2450.
9. Fei H.L., Zhou H.J., Wang J.G. et al. Synthesis of hollow V2O5 microspheres and application to photocatalysis // Solid State Sci. – 2008. –V. 10. – P. 1276–1284.
10. Song L.X., Xia J., Dang Z. et al. Formation, structure and physical properties of a series of α-MoO3nanocrystals: from 3D to 1D and 2D // Cryst. Eng. Comm. – 2012. – V. 14. – P. 2675–2682.
11. Vernardoua D., Spanakis E., Kenanakisa G. et al. Hydrothermal growth of V2O5 photoactive films at low temperatures // Mater. Chem. Phys. – 2010. – V. 124. – P. 319–322.
12. Skwarek E., Khalameida S., Janusz W. et al. Influence of mechanochemical activation on structure and some properties of mixed vanadium–molybdenum oxides // J. Therm. Anal. Calorim. – 2011. – V. 106. – P. 881–894.
13. Sydorchuk V., Makota O., Khalameida S. et al. Physical–chemical and catalytic properties of deposited MoO3 and V2O5 // J. Therm. Anal. Calorim. – 2012. –V. 108. –P. 1001–1008.
14. Митченко С.А. Механохимия в гетеро-генном катализе // Теорет. эксперим. химия. – 2007. – Т. 43, № 4. – С. 199–214.
15. Chen F., Zhao J., Hidaka H. Highly selective deethylation of rhodamine B: Adsorption and photooxidation pathways of the dye on the TiO2/SiO2 composite photocatalyst // Int. J. Photoenergy. – 2003. – V. 5. – P. 209–217.
16. Fu H., Zhang S., Xu T. et al. Ptotocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products // Environ. Sci. Technol. – 2008. – V. 42. – P. 2085–2091.
17. Wilhelm P., Stephan D. Photodegradation of rhodamine B in aqueous solution via SiO2@TiO2 nano-spheres // J. Photochem. Photobiol. A. – 2007. – V. 185. – P. 19–25.
18. Hess C. Direct correlation of the dispersion and structure in vanadium oxide supported on silica SBA-15 // J. Catal. – 2007. – V. 248. – P. 120–123.
19. Weber R.S. Effect of local structure on the UV-Visible absorption edges of molybdenum oxide clusters and supported molybdenum oxides // J. Catal. – 1995. – V. 151. – P. 470–474.
20. Gao X., Bare S.R., Weckhuysen B.M., Wachs I.E. In situ spectroscopic investigation of molecular structures of highly dispersed vanadium oxide on silica under various conditions // J. Phys. Chem. B. – 1998. – V. 102. – P. 10842–10852.
21. Thompson L.P., Yates J.T. Surface science studies of the photocatalytic of TiO2 – New photochemical processes // Chem. Rev. – 2006. – V. 106. – P. 4428–4453.
22. Lazar M.A., Daoud W.A. Selective adsorption and photocatalysis of low-temperature base-modified anatase nanocrystals // RSC Adv. – 2012. – V. 2. – P. 447–452.
23. Gupta V.K., Jain R., Mittal A. et al. Photochemical degradation of the hazardous dye Safranin-T using TiO2catalyst // J. Colloid Interface Sci. – 2007. – V. 309. – P. 464–469.
24. Крылов О.В. Гетерогенный катализ. Москва: Академкнига, 2004. – 679 с.
25. Batzill M. Fundamental aspects of surface engineering of transition metal oxide photocatalysts // Energy Environ. Sci. – 2011. – V. 4. – P. 3275–3286.
26. Brinkley D., Engel T. Evidence for structure sensitivity in the thermally activated and photocatalytic dehydrogenation of 2-propanol on TiO2 // J. Phys. Chem. B – 2000. – V. 104. – P. 9836–9842.
27. Wilson J.N., Idriss H. Structure sensitivity and photocatalytic reactions of semiconductors. Effect of the last layer atomic arrangement // J. Am. Chem. Soc. – 2002. – V. 124. – P. 11284–11285.
28. Молчанов В.В., Плясова Л.М., Гойдин В.В. и др. Новые соединения в системе MoO3–V2O5 // Неорган. материалы. – 1995. –Т. 31. – № 9. – С. 1225–1229.
29. Халамейда С.В., Зажигалов В.А. Механо-химическая модификация V-содержащих катализаторов // Катализ и нефтехимия. – 2003. – Вып. 11. – С. 85–97.
30. Mestl G., K.Srinivasan T.K., Knozinger H. Mechanically activated MoO3. 1. Particle size, crystallinity, and morphology // Langmuir. – 1995. –V. 11. – P. 3027–3034.
31. Литвин Н.С., Халамейда С.В., Зажигалов В.А. Влияние механохими-ческой обработки на свойства МоО3 // Доповіді НАН України. – 2010. – № 9. – C. 108–113.
32. Халамейда С.В., Литвин Н.С., Зажигалов В.О. Модифікування поверхні оксиду молібдену МоО3шляхом його механохімічной обробки // Хімія, фізика та технологія поверхні. – 2010. – Т. 1, № 1. – С. 50–56.
33. Hu C., Wang Y., Tang H. Influence of adsorption on the photodegradation of various dyes using surface bond-conjugated TiO2/SiO2 photocatalyst // Appl. Catal. B. –2001. – V. 35. – P. 95–105.
34. Selishchev D.S., Kolinko P.A., Kozlov D.V. Influence of adsorption on the photocatalytic properties of TiO2/AC composite materials in the acetone and cyclohexane vapor photooxidation reactions // J. Photochem. Photobiol. A. – 2012. – V. 229. – P. 11–19.
35. Халамейда С.В., Сидорчук В.В., Зажигалов В.О. та ін. Механохімічна, мікрохвильова та ультразвукова деградація сафраніну в присутності різних форм діоксиду титану // Хімія, фізика та технологія поверхні. – 2011. – Т. 2, № 3. – С. 235–241.
36. Gupta N.S., Basu S., Payra P. et al. Reduction of nitrite to NO in an organised triphasic medium by platinum carbonyl clusters and redox active dyes as electron carriers // Dalton Trans. – 2007. – P. 2594–2598.
37. Zayed M.A., Gehad G. Mohamed G.G., Abdullah S.A.M. Synthesis, structure investigation, spectral characteristics and biological activities of some novel azodyes // Spectrochim. Acta. Part A. – V. 78. – 2011. – P. 1027–1036.
38. Kavarnos G.I., Turro N.J. Photosensitization by reversible electron transfer: theories, experimental evidence, and examples // Chem. Rev. – 1986. – V. 86. – P. 401–449.
39. Pei D., Luan J. Development of visible light-responsive sensitized photocatalysts // Int. J. Photoenergy. – V. 2012. – Article ID 262831 – 2012. – 13 p., doi:10.1155/2012/262831.
Copyright (©) 2013 V. V. Sydorchuk, S. V. Khalameida, V. O. Zazhigalov, O. A. Khanina
This work is licensed under a Creative Commons Attribution 4.0 International License.