Утворення графеноподібних частинок при відновленні оксиду графіту
Анотація
Ключові слова
Посилання
1. Niyogu S., Bekyarova E., Itkis M.E. et al. Solution properties of graphite and graphene // J. Am. Chem. Soc. – 2006. – V. 128, N 24. – P. 7720–7721.
2. Titelman G.I., Gelman V., Bron S. et al. Characteristic and microstructure of aqueous colloidal dispersions of graphite oxide // Carbon. – 2005. – V. 43, N 3. – P. 641–649.
3. Min K., Han T.H., Kom J. et al. A facile route to fabricate stable reduced graphene oxide dispersions in various media and their transparent conductive thin films // J. Colloid. Interface Sci. – 2012. – V. 383, N 1. – P. 36–42.
4. Eda G., Fanchini G., Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material // Nat. Nanotech. – 2008. – V. 3, N 5. – P. 270–274.
5. Wang X.R., Ouyang Y.J., Li X.L. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors // Phys. Rev. Lett. – 2008. – V. 100, N 20. – P. 206803.
6. Fernández-Merino M.J., Guardia L., Paredes J.I. et al. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions // J. Phys. Chem. C. – 2010. – V. 114. – P. 6426–6432.
7. Verdejo R., Barroso-Bujans F., Rodriguez-Perez M.A. et al. Functionalized graphene sheet filled silicone foam nanocomposites // J. Mater. Chem. – 2008. – V. 18, N 19. – P. 2221–2226.
8. Папаянина Е.С., Савоськин М.В., Вдовиченко А.Н. и др. Оксид графита – стадии формирования и новый взгляд на структуру // Теор. эксперим. химия. – 2013. – Т. 49, № 2. – С. 81–87.
9. Wang G., Yang J., Park J. et al. Facile synthesis and characterization of graphene nanosheets // J. Phys. Chem. C. – 2008. – V. 112, N 22. – P. 8192–8195.
10. Stankovich S., Piner R.D., Chen X. et al. Stable aqueous dispersions of graphitic nano-plateletsviathe reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate) // J. Mater. Chem. – 2006. – V. 16, N 2. – P. 155–158.
11. Gao W., Alemany L.B., Ci L., Ajayan P.M. New insights into the structure and reduction of graphite oxide // Nat. Chem. – 2009. – V. 1, N 5. – P. 403–408.
12. Linares-Solan A., Mahajan O.P., Weldon D., Walker P.L. Coal liquefaction yields in tetralin – their prediction from heat measurements of coal hydrogenation in H2 by DSC // Fuel. – 1987. – V. 66, N 5. – P. 715–717.
13. Hendrik G. J. Potgieter. Kinetics of conversion of tetralin during hydrogenation of coal // Fuel. – 1973. – V. 52, N 2. – P. 134–137.
14. Fan X., Peng W., Li Ya et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation // Adv. Mater. – 2008. – V. 20, N 23. – P. 4490–4493.
15. Syeden-Penne J. Reduction by the alumino- and borohydrides in organic synthesis. – Canada: Wiley-VCH, 1997. – 224 p.
16. Kis A., Csányi G., Salvetat J.P. et al. Reinforcement of single-walled carbon nanotube bundles by intertube bridging // Nat. Mater. – 2004. – V.3, N 3. – P 153–157.
Copyright (©) 2014 O. S. Papaianina, M. V. Savoskin, A. N. Vdovichenko, M. Yu. Rodygin, M. A. Kompanets, I. O. Opeida
This work is licensed under a Creative Commons Attribution 4.0 International License.