Хімія, фізика та технологія поверхні, 2014, 5 (4), 404-414.

Декорування входів у пори МСМ‑41 аміновмісними групами для рН‑контрольованого вивільнення пара‑амінобензойної кислоти



DOI: https://doi.org/10.15407/hftp05.04.404

N. V. Roik, L. A. Belyakova, M. O. Dziazko, O. I. Oranska

Анотація


Поєднанням золь‑гель конденсації та пост‑синтетичного хімічного модифікування одержано вибірково модифіковані кремнеземні матеріали з однорідними гексагонально впорядкованими циліндричними мезопорами. Гексагональну структуру пор кремнеземних носіїв підтверджено даними  рентгенівської дифракції та низькотемпературної ад‑десорбції азоту. Вміст функціональних груп, іммобілізованих на зовнішній поверхні частинок кремнезему, визначали з результатів хімічного аналізу продуктів реакції. Здатність мезопористих кремнеземів, спрямовано модифікованих N‑(2‑аміноетил)‑3‑амінопропільними чи N‑[N’-(N’-феніл)-2-амінофеніл]‑3‑амінопропільними групами, до вивільнення біологічно активних речовин вивчено на прикладі пара‑амінобензойної кислоти. Встановлено, що десорбцію ароматичної амінокислоти з каналів мезопор кремнезему можна регулювати, використовуючи рН‑чутливі функціональні групи, хімічно закріплені на зовнішній поверхні кремнезему.

Ключові слова


золь‑гель синтез; парофазне модифікування; десорбція; поверхневі властивості

Повний текст:

PDF (English)

Посилання


1. Kresge C.T., Leonowicz M.E., Roth W.J., Vartuli J.C., Beck J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992. 359: 710. https://doi.org/10.1038/359710a0

2. Iskandar F. Ordered nanoporous particles. Encyclopedia of Nanoscience and Nanotechnology. 2004. 8: 259.

3. Lin H.P., Cheng S., Mou C.-Y. Synthesis of thermally stable MCM 41 at ambient temperature. J. Chin. Chem. Soc. 1996. 43(5): 375. https://doi.org/10.1002/jccs.199600054

4. Van Der Voort P., Mathieu M., Mees F., Vansant E.F. Synthesis of high quality MCM 48 and MCM 41 by means of the GEMINI surfactant method. J. Phys. Chem. B. 1998. 102(44): 8847. https://doi.org/10.1021/jp982653w

5. Jana S.K., Nishida R., Shindo K., Kugita T., Namba S. Pore size control of mesoporous molecular sieves using different organic auxiliary chemicals. Microporous Mesoporous Mater. 2004. 68(1–3): 133. https://doi.org/10.1016/j.micromeso.2003.12.010

6. Beck J.S., Vartuli J.C., Roth W.J., Leonowicz M.E., Kresge C.T., Schmitt K.D., Chu C.T.W., Olson D.H., Sheppard E.W., McCullen S.B., Higgins J.B., Schlenker J.L. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992. 114(27): 10834. https://doi.org/10.1021/ja00053a020

7. Corma A., Kan Q., Navarro M.T., Pérez-Pariente J., Rey F. Synthesis of MCM-41 with different pore diameters without addition of auxiliary organics. Chem. Mater. 1997. 9(10): 2123. https://doi.org/10.1021/cm970203v

8. Gao T., Wen C., Long C., Jing Z., Jingkun G. Effects of assistant agent on mesoporous structure of silica MCM 41 molecular sieves. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2005. 20(2): 60.

9. Huo Q., Margolese D.I., Stucky G.D. Surfactant control of phases in the synthesis of mesoporous silica based materials. Chem. Mater. 1996. 8(5): 1147. https://doi.org/10.1021/cm960137h

10. Sayari A., Liu P. Characterization of large pore MCM-41 molecular sieves obtained via hydrothermal restructuring. Chem. Mater. 1997. 9(11): 2499. https://doi.org/10.1021/cm970128o

11. Sutra P., Fajula F., Brunel D., Lentz P., Daelen G., Nagy J.B. 29Si and 13C MAS-NMR characterization of surface modification of micelle-templated silicas during the grafting of organic moieties and end-capping. Colloids Surf. A. 1999. 158(1–2): 21. https://doi.org/10.1016/S0927-7757(99)00126-0

12. Yang H., Zhang G., Hong X., Zhu Y. Silylation of mesoporous silica MCM-41 with the mixture of Cl(CH2)3SiCl3 and CH3SiCl3: combination of adjustable grafting density and improved hydrothermal stability. Microporous Mesoporous Mater. 2004. 68(1–3): 119. https://doi.org/10.1016/j.micromeso.2003.12.014

13. Bae J.A., Song K.-C., Jeon J.-K., Ko Y.S., Park Y.-K., Yim J.-H. Effect of pore structure of amine functionalized mesoporous silica-supported rhodium catalysts on 1 octene hydroformylation. Micropor. Mesopor. Mater. 2009. 123(1–3): 289. https://doi.org/10.1016/j.micromeso.2009.04.015

14. Lesaint C., Lebeau B., Marichal C., Patarin J. Synthesis of mesoporous silica materials functionalized with n-propyl groups. Microporous Mesoporous Mater. 2005. 83(1–3): 76. https://doi.org/10.1016/j.micromeso.2005.01.012

15. Yoshitake H., Koiso E., Horie H., Yoshimura H. Polyamine functionalized mesoporous silicas: Preparation, structural analysis and oxyanion adsorption. Microporous Mesoporous Mater. 2005. 85(1–2): 183. https://doi.org/10.1016/j.micromeso.2005.06.009

16. Daehler A., Boskovic S., Gee M.L., Separovic F., Stevens G.W., O'Connoret A.J. Postsynthesis vapor-phase functionalization of MCM 48 with hexamethyldisilazane and 3 aminopropyldimethylethoxylsilane for bio-separation applications. J. Phys. Chem. B. 2005. 109(34): 16263. https://doi.org/10.1021/jp0511799

17. Slowing I.I., Vivero-Escoto J.L., Wu C.-W., Lin S.-Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Delivery Rev. 2008. 60(11): 1278. https://doi.org/10.1016/j.addr.2008.03.012

18. Patel K., Angelos S., Dichtel W.R., Coskun A., Yang Y.-W., Zink J.I., Stoddart J.F. Enzyme-responsive snap top covered silica nanocontainers. J. Am. Chem. Soc. 2008. 130(8): 2382. https://doi.org/10.1021/ja0772086

19. Zhao Y., Trewyn B.G., Slowing I.I., Lin V.S. Y. Mesoporous silica nanoparticle based double brug delivery system for glucose responsive controlled release of insulin and cyclic AMP. J. Am. Chem. Soc. 2009. 131(24): 8398. https://doi.org/10.1021/ja901831u

20. Nguyen T.D., Tseng H. R., Celestre P.C., Flood A.H., Liu Y., Stoddart J.F., Zink J.I. A reversible molecular valve. PNAS. 2005. 102(29): 10029.  https://doi.org/10.1073/pnas.0504109102

21. Nguyen T.D., Leung K.C. F., Liong M., Pentecost C.D., Stoddart J.F., Zink J.I. Construction of a pH-driven supramolecular nanovalve. Org. Lett. 2006. 8(15): 3363. https://doi.org/10.1021/ol0612509

22. Angelos S., Yang Y. W., Patel K., Stoddart J.F., Zink J.I. pH responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes. Angew. Chem. Int. Ed. Engl. 2008. 47(12): 2222.  https://doi.org/10.1002/anie.200705211

23. Park C., Oh K., Lee S.C., Kim C. Controlled release of guest molecules from mesoporous silica particles based on a pH responsive polypseudorotaxane motif. Angew. Chem. Int. Ed. Engl. 2007. 46(9): 1455. https://doi.org/10.1002/anie.200603404

24. Guo W., Wang J., Lee S. J., Dong F., Park S.S., Ha Ch.S. A general pH responsive supramolecular nanovalve based on mesoporous organosilica hollow nanospheres. Chem. Eur. J. 2010. 16(29): 8641. https://doi.org/10.1002/chem.201000980

25. Meng H., Xue M., Xia T., Zhao Y.-Li., Tamanoi F., Stoddart J.F., Zink J.I., Nel A.E. Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH sensitive nanovalves. J. Am. Chem. Soc. 2010. 132(36): 12690.  https://doi.org/10.1021/ja104501a

26. Hernandez R., Tseng H. R., Wong J.W., Stoddart J.F., Zink J.I. An operational supramolecular nanovalve. J. Am. Chem. Soc. 2004. 126(11): 3370. https://doi.org/10.1021/ja039424u

27. Casasus R., Marcos M.D., Martinez Manez R., Ros-Lis J.V., Soto J., Villaescusa L.A., Amorós P., Beltrán D., Guillem C., Latorre J. Toward the development of ionically controlled nanoscopic molecular gates. J. Am. Chem. Soc. 2004. 126(28): 8612. https://doi.org/10.1021/ja048095i

28. Choi H.S., Huh K.M., Ooya T., Yui N. pH and thermosensitive supramolecular assembling system: rapidly responsive properties of cyclodextrin conjugated poly(E lysine). J. Am. Chem. Soc. 2003. 125(21): 6350. https://doi.org/10.1021/ja034149x

29. Park C., Lee K., Kim C. Photoresponsive cyclodextrin covered nanocontainers and their sol gel transition induced by molecular recognition. Angew. Chem. Int. Ed. Engl. 2009. 48(7): 1275. https://doi.org/10.1002/anie.200803880

30. Mal N.K., Fujiwara M., Tanaka Y. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature. 2003. 421(6921): 350. https://doi.org/10.1038/nature01362

31. Bragg W.L. The diffraction of short electromagnetic waves by a crystal. Proceedings of the Cambridge Philosophical Society. 1913. 17: 43.

32. Fenelonov V.B., Romannikov V.N., Derevyankin A.Yu. Mesopore size and surface area calculations for hexagonal mesophases (types MCM-41, FSM-16, etc.) using low-angle XRD and adsorption data. Microporous Mesoporous Mater. 1999. 28(1): 57. https://doi.org/10.1016/S1387-1811(98)00280-7

33. Kruk M., Jaroniec M., Sayari A. Adsorption study of surface and structural properties of MCM 41 materials of different pore sizes. J. Phys. Chem. B. 1997. 101(4): 583. https://doi.org/10.1021/jp962000k

34. Pohloudek Fabini R., Beyrich Th. Organische Analyse. (Akademische Verlagsgesellschart Geest und Portig K. G., Leipzig, 1975).

35. Williams W.J. Handbook of anion determination. (London: Butterworths, 1979). Helfferich F.G. Ion exchange. (New York: Dover Publications Inc., 1995).

36. Roik N.V., Belyakova L.A. Sol-gel synthesis of MCM-41 silicas and selective vapor phase modification of their surface. J. Solid State Chem. 2013. 207: 194. https://doi.org/10.1016/j.jssc.2013.09.027

37. Roik N.V., Belyakova L.A. Interaction of supramolecular centers of silica surface with aromatic amino acids. J. Colloid Interface Sci. 2011. 362(1): 172. https://doi.org/10.1016/j.jcis.2011.05.085




DOI: https://doi.org/10.15407/hftp05.04.404

Copyright (©) 2014 N. V. Roik, L. A. Belyakova, M. O. Dziazko, O. I. Oranska

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.