Квантовохімічний дизайн нових полімерних матеріалів на основі тетраоксо[8]циркулену
DOI: https://doi.org/10.15407/hftp06.03.305
Анотація
Ключові слова
Посилання
1. Geim A.K., Novoselov K.S. The rise of graphene. Nat. Mater. 2007. 6: 183. https://doi.org/10.1038/nmat1849
2. Gutzler R., Perepichka D.F. π-Electron conjugation in two dimensions. J. Am. Chem. Soc. 2013. 135(44): 16585.https://doi.org/10.1021/ja408355p
3. Hajgató B., Deleuze M.S. Quenching of magnetism in hexagonal graphene nanoflakes by non-local electron correlation. Chem. Phys. Lett. 2012. 553: 6. https://doi.org/10.1016/j.cplett.2012.10.015
4. Liu X.-H., Guan C.-Z., Wang D., Wan L.-J. Graphene-Like Single-Layered Covalent Organic Frameworks: Synthesis Strategies and Application Prospects. Adv. Mater. 2012. 26: 6912. .https://doi.org/10.1002/adma.201305317
5. Xu M., Liang T., Shi M., Chen H. Graphene-Like Two-Dimensional Materials. Chem. Rev. 2013. 113(5): 3766. https://doi.org/10.1021/cr300263a
6. Govindaraju T., Avinasha M.B. Two-dimensional nanoarchitectonics: organic and hybrid materials. Nanoscale. 2012. 4(20): 6102. https://doi.org/10.1039/c2nr31167d
7. Yamijala S.S.R.K.C., Bandhyopadyay A., Pati S.K. Electronic properties of zigzag, armchair and their hybrid quantum dots of graphene and boron-nitride with and without substitution: A DFT study. Chem. Phys. Lett. 2014.603: 28. https://doi.org/10.1016/j.cplett.2014.04.025
8. Perumal S., Minaev B., Ågren H. Spin-spin and spin-orbit interactions in nanographene fragments: A quantum chemistry approach. J. Chem. Phys. 2012. 136(10): 104702. https://doi.org/10.1063/1.3687002
9. Jiang L., Fan Z. Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures.Nanoscale. 2014. 6(4): 1922. https://doi.org/10.1039/C3NR04555B
10. Terrones H., Terrones M., Hernandez E., Grobert N., Charlier J.-C., Ajayan P.M. New Metallic Allotropes of Planar and Tubular Carbon. Phys. Rev. Lett. 2000. 84(8): 1716. https://doi.org/10.1103/PhysRevLett.84.1716
11. Nisar J., Jiang X., Pathak B., Zhao J., Kang T.W., Ahuja R. Semiconducting allotrope of graphene.Nanotechnology. 2012. 23(38): 385704. https://doi.org/10.1088/0957-4484/23/38/385704
12. Brunetto G., Autreto P.A.S., Machado L.D., Santos B.I., dos Santos R.P.B., Galvão D.S. Nonzero Gap Two-Dimensional Carbon Allotrope from Porous Graphene. J. Phys. Chem. C. 2012. 116(23): 12810.https://doi.org/10.1021/jp211300n
13. Schlütter F., Nishiuchi T., Enkelmann V., Müllen K. Octafunctionalized biphenylenes: molecular precursors for isomeric graphene nanostructures. Angew. Chem. Int. Ed. 2014. 53(6): 1538.https://doi.org/10.1002/anie.201309324
14. Karaush N.N., Baryshnikov G.V., Minaev B.F. DFT characterization of a new possible graphene allotrope.Chem. Phys. Lett. 2014. 612: 229. https://doi.org/10.1016/j.cplett.2014.08.025
15. Miro P., Audiffred M., Heine T. An atlas of two-dimensional materials. Chem. Soc. Rev. 2014. 43(18): 6537.https://doi.org/10.1039/C4CS00102H
14. Baryshnikov G.V., Minaev B.F., Karaush N.N., Minaeva V.A. Design of nanoscaled materials based on tetraoxa[8]circulene. Phys. Chem. Chem. Phys. 2014. 16(14): 6555. https://doi.org/10.1039/c3cp55154g
17. Rubio-Pons O., Loboda O., Minaev B., Schimmelpfennig B., Vahtras O., Agren H. CASSCF calculations of triplet state properties: applications to benzene derivatives. Mol. Physics. 2003. 101(13): 2103.https://doi.org/10.1080/0026897031000109248
18. Baryshnikov G.V., Minaev B.F., Karaush N.N., Minaeva V.A. The art of the possible: computational design of the 1D and 2D materials based on the tetraoxa[8] circulene monomer. RSC Adv. 2014. 4(49): 25843.https://doi.org/10.1039/c4ra02693d
19. Smith M.W., Jordan K.C, Park C., Kim J.-W., Lillehei P.T., Crooks R., Harrison J.S. Very long single- and few-walled boron nitride nanotubes via the pressurized vapor/condenser method. Nanotechnology. 2009. 20(50): 505604. https://doi.org/10.1088/0957-4484/20/50/505604
20. Fleischer E.B. Structure of porphyrins and metalloporphyrins. Acc. Chem. Res. 1970. 3(3): 105.https://doi.org/10.1021/ar50027a004
21. Lever A.B.P. The Phthalocyanines. Adv. Inorg. Chem. Radiochem. 1965. 7: 27. https://doi.org/10.1016/S0065-2792(08)60314-3
22. Balzani V., Juris A. Photochemistry and photophysics of Ru(II) polypyridine complexes in the Bologna group. From early studies to recent developments. Coord. Chem. Rev. 2001. 211: 97. https://doi.org/10.1016/S0010-8545(00)00274-5
23. Waltera M.G., Rudineb A.B., Wamser C.C. Porphyrins and phthalocyanines in solar photovoltaic cells. J. Porphyrins Phthalo-cyanines. 2010. 14(9): 759. https://doi.org/10.1142/S1088424610002689
24. Shi Z., Lin N. Structural and Chemical Control in Assembly of Multicomponent Metal−Organic Coordination Networks on a Surface. J. Amer. Chem. Soc. 2010. 132(31): 10756. https://doi.org/10.1021/ja1018578
25. Banala S., Huber R.G., Müller T., Fechtel M., Liedl K.R., Kräutler B. Porphyrin-LEGO®: synthesis of a hexafullereno-diporphyrin using porphyrins programmed for [4+2]-cycloaddition. Chem. Comm. 2012. 48(32): 4359. https://doi.org/10.1039/c2cc31218b
26. Banala S., Wurst K., Kräutler B. Symmetrical tetra-b″-sulfoleno-meso-aryl-porphyrins synthesis, spectroscopy and structural characterization. J. Porphyrins Phthalo-cyanines. 2014. 18(01n02): 115.https://doi.org/10.1142/S1088424613501204
27. Li Y., Xiao J., Shubina T.E., Chen M., Shi Z., Schmid M., Steinruck H.-P., Gottfried J.M., Lin N. Coordination and Metalation Bifunctionality of Cu with 5,10,15,20-Tetra(4-pyridyl)porphyrin: Toward a Mixed-Valence Two-Dimensional Coordination Network. J. Amer. Chem. Soc. 2012. 134(14): 6401.https://doi.org/10.1021/ja300593w
28. Nakamura Y., Aratani N., Furukawa K., Osuka A. Synthesis and characterizations of free base and Cu(II) complex of a porphyrin sheet. Tetrahedron. 2008. 64(50): 11433. https://doi.org/10.1016/j.tet.2008.08.072
29. Nakamura Y., Aratani N., Shinokubo H., Takagi A., Kawai T., Matsumoto T., Yoon Z.S., Kim D.Y., Ahn T.K., Kim D., Muranaka A., Kobayashi N., Osuka A.A. Directly Fused Tetrameric Porphyrin Sheet and Its Anomalous Electronic Properties That Arise from the Planar Cyclooctatetraene Core. J. Amer. Chem. Soc. 2006. 128(12): 4119. https://doi.org/10.1021/ja057812l
30. Nielsen C.B. Brock-Nannestad T., Reenberg T.K., Hammershøj P., Christensen J.B., Stouwdam J.W., Pittelkow M. Organic light-emitting diodes from symmetrical and unsymmetrical π-extended tetraoxa[8]circulenes. Chem. Eur. J. 2010. 16(44): 13030. https://doi.org/10.1002/chem.201002261
31. Minaev B.F., Baryshnikov G.V., Minaeva V.A. Density functional theory study of electronic structure and spectra of tetraoxa[8]circulenes. Comput. Theor. Chem. 2011. 972(1–3): 68.https://doi.org/10.1016/j.comptc.2011.06.020
32. Minaeva V.A., Minaev B.F., Baryshnikov G.V., Ågren H., Pittelkow M. Experimental and theoretical study of IR and Raman Spectra of tetraoxa[8]circulenes. Vibr. Spectrosc. 2012. 61: 156.https://doi.org/10.1016/j.vibspec.2012.02.005
33. Baryshnikov G.V., Minaev B.F., Pittelkow M., Nielsen C.B., Salcedo R. Nucleus-independent chemical shift criterion for aromaticity in π-extended tetraoxa[8]circulenes. J. Mol. Model. 2013. 19(2): 847.https://doi.org/10.1007/s00894-012-1617-7
34. Karaush N.N., Minaev B.F., Baryshnikov G.V., Minaeva V.A. A Comparative Study of the Electronic Structure and Spectra of Tetraoxa[8]circulene and Octathio[8]circulene. Opt. Spectrosc. 2014. 116(1): 33.https://doi.org/10.1134/S0030400X13120084
35. Baryshnikov G.V., Valiev R.R., Karaush N.N., Minaev B.F. Aromaticity of the planar hetero[8]circulenes and their doubly charged ions: NICS and GIMIC characterization. Phys. Chem. Chem. Phys. 2014. 16(29): 15367.https://doi.org/10.1039/c4cp00860j
36. Becke A.D. Density functional thermo-chemistry. III. The role of exact exchange. J. Chem. Phys. 1993. 98(7): 5648. https://doi.org/10.1063/1.464913
37. Gordon M.S., Binkley J.S., Pople J.A., Pietro W.J., Hehre W.J. Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements. J. Am. Chem. Soc. 1982. 104(10): 2797.https://doi.org/10.1021/ja00374a017
38. Krishnan R., Binkley J.S., Seeger R., Pople J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980. 72(1): 650. https://doi.org/10.1063/1.438955
39. Runge E., Gross E.K.U. Density-Functional Theory for Time-Dependent Systems. Phys. Rev. Lett. 1984. 52(12): 997. https://doi.org/10.1103/PhysRevLett.52.997
40. Datta A., Mohakud S., Pati S.K. Electron and hole mobilities in polymorphs of benzene and naphthalene: Role of intermolecular interactions. J. Chem. Phys. 2007. 126(14): 144710. https://doi.org/10.1063/1.2721530
41. Datta A., Mohakud S., Pati S.K. Comparing the electron and hole mobilities in the α and β phases of perylene: role of π-stacking. J. Mater. Chem. 2007. 17(19): 1933. https://doi.org/10.1039/b700625j
42. Mohan V., Datta A. Structures and Electronic Properties of Si-Substituted Benzenes and Their Transition-Metal Complexes. J. Phys. Chem. Lett. 2010. 1(1): 136. https://doi.org/10.1021/jz900080q
43. Frisch M.J. et al. Gaussian 09, revision C.02. (Gaussian, Inc., Wallingford, CT, 2009).
44. Tsuda A., Osuka A. Fully Conjugated Porphyrin Tapes with Electronic Absorption Bands That Reach into Infrared. Science. 2001. 293(5527): 79. https://doi.org/10.1126/science.1059552
45. Tossell J.A. Na+ Complexes with Crown Ethers: Calculation of 23Na NMR Shieldings and Quadrupole Coupling Constants. J. Phys. Chem. B. 2001. 105(45): 11060. https://doi.org/10.1021/jp0115143
46. Nguan H., Ahmadi S., Hashim R. DFT study of glucose based glycolipid crown ethers and their complexes with alkali metal cations Na+ and K+. J. Mol. Model. 2012. 18: 5041. https://doi.org/10.1021/jp0115143
47. Inokuchi Y., Boyarkin O.V., Kusaka R., Haino T., Ebata T., Rizzo T.R. UV and IR Spectroscopic Studies of Cold Alkali Metal Ion-Crown Ether Complexes in the Gas Phase. J. Amer. Chem. Soc. 2011. 133(31): 12256.https://doi.org/10.1021/ja2046205
48. Monajjemi M., Najafpour J. Non Bonded Interaction and Charge Density Analysis of Alkali Metal Cations with Crown Ethers (12c4, 15c5 and 18c6); A Nano Approach. Am. J. Res. Commun. 2013. 1(1): 13.
49. Kang Y., Zhang Z., Shi H., Zhang J., Liang L., Wang Q., Agren H., Tub Y. Na+ and K+ ion selectivity by size-controlled biomimetic graphene nanopores. Nanoscale. 2014. 6: 10666. https://doi.org/10.1039/C4NR01383B
DOI: https://doi.org/10.15407/hftp06.03.305
Copyright (©) 2015 G. V. Baryshnikov, N. N. Karaush, V. A. Minaeva, B. F. Minaev
This work is licensed under a Creative Commons Attribution 4.0 International License.