Хімія, фізика та технологія поверхні, 2015, 6 (4), 413-448.

Оксид графену:одержання, властивості, застосування (огляд)



DOI: https://doi.org/10.15407/hftp06.04.413

N. A. Havryliuk, E. N. Shevchuk, G. P. Prikhod’ko, M. T. Kartel

Анотація


Оксид графену – новий каркасний вуглецевий матеріал з високою питомою активною поверхнею, утвореною шарами графіту, краї яких вкриті широким спектром функціональних кисневмісних груп. Ці групи, разом з вуглецевими вакансіями і дефектами, одержаними в процесі окиснення, виявляють властивості активних центрів в каталітичних реакціях та при взаємодії з різними наночастинками. Основну увагу в огляді зосереджено на хімії оксиду графену, його синтезі, структурі, фізичних та хімічних властивостях, можливих застосуваннях, оскільки він має велике наукове і технологічне значення, як одна із форм окисненого вуглецю та як прекурсор для різних графенових похідних і композитів.

Ключові слова


оксид графену; відновлений оксид графену; біоміметичні наноматеріали; хімія поверхні

Повний текст:

PDF

Посилання


1. Sun Z., James D.K., Tour J.M. Graphene chemistry:synthesis and manipulation. J. Phys. Chem. Lett. 2011. 2(19): 2425.  https://doi.org/10.1021/jz201000a

2. Georgakilas V., Otyepka M., Bourlinos A.B. Chandra V., Kim N., Kemp K. C., Hobza P., Zboril R., Kim K.S.Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 2012. 112(11): 6156.  https://doi.org/10.1021/cr3000412

3. GrayferE.D., Makotchenko V.G., Nazarov A.S., Kim S.-J., Fedorov V.E.Graphene: chemical approaches to the synthesis and modification. Russ. Chem. Rev. 2011. 80(8): 751.  https://doi.org/10.1070/RC2011v080n08ABEH004181

4. Eletskii A.V., Iskandarova I.M., Knizhnik A.A., Krasikov D.N. Graphene: fabrication methods and thermophysical properties. Physics-Uspekhi. 2011. 54(3): 227.  https://doi.org/10.3367/UFNe.0181.201103a.0233

5. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Katsnelson M.I., Grigorieva I.V., Dubonos S.V., Firsov A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 2005. 438(7065): 197.  https://doi.org/10.1038/nature04233

6. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thin carbon films. Science. 2004. 306 (5696): 666.  https://doi.org/10.1126/science.1102896

7. Novoselov K.S., Falko V.I., Colombo L., Gellert P.R., Schwab M.G., Kim K. A roadmap for graphene. Nature. 2012. 490(7419): 192. https://doi.org/10.1038/nature11458

8. Singh V., Joung D., Zhai L., Das S., Khondaker S.I, Seal S. Graphene based materials: past, present and future. Prog. Mater. Sci. 2002. 56:  1178.  https://doi.org/10.1016/j.pmatsci.2011.03.003

9. Batzill M. The surface science of graphene: metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surface Science Reports. 2012. 67: 83.  https://doi.org/10.1016/j.surfrep.2011.12.001 

10. Weiss N.O., Zhou H., Liao L., Liu Y., Jiang S., Huang Y., Duan, X. Graphene: An Emerging Electronic Material.  Adv. Mater. 2012. 24(43): 5782.  https://doi.org/10.1002/adma.201201482

11. Sorokin P.B., ChernozatonskiiL.A. Graphene – based semiconductor nanostructures. Physics-Uspekhi. 2013. 56(2): 102.  https://doi.org/10.3367/UFNe.0183.201302a.0113

12. Huang C., Li C., Shi G. Graphene based catalysts. 2012. Energy Environ. Sci. 2012. 5: 8848.   https://doi.org/10.1039/c2ee22238h

13. Liu Y., Dong X., Chen P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 2012. 41(6): 2283.  https://doi.org/10.1039/C1CS15270J

14. Sun Y., Wu Q., Shi G. Graphene based new energy materials. Energy Environ. Sci. 2011. 4(4): 1113. https://doi.org/10.1039/c0ee00683a

15. Wassei J.K., Kaner R.B. Oh, the places you’ll go with graphene. Acc. Chem. Res. 2013. 46(10): 2244.  https://doi.org/10.1021/ar300184v 

16. Barroso-Bujans F., Alegrı´a A., Colmenero J. Kinetic study of the graphite oxide reduction: combined structural and gravimetric experiments under isothermal and nonisothermal conditions. J. Phys. Chem. C. 2010. 114: 21645.  https://doi.org/10.1021/jp108905j

17. Bagri A., Mattevi C., Acik M., Chabal. Y.J., Chhowalla M., Shenoy V.B. Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2010. 2: 581.  https://doi.org/10.1038/nchem.686 

18. Segal M. Selling graphene by the ton. Nat. Nanotechnol. 2009. 4(10): 612.  https://doi.org/10.1038/nnano.2009.279

19. Low F.W., Lain C.W., Hamid S.B.A. Easy preparation of ultrathin reduced graphene oxide sheets at a high stirring speed. Ceramics International. 2015. 41: 5798.  https://doi.org/10.1016/j.ceramint.2015.01.008 

20. Tung V.C., Allen M.J., Yang Y., Kaner R.B. High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 2009. 4(1): 25. https://doi.org/10.1038/nnano.2008.329

21. Liu W.-W., Chai S.-P., Mohamed A.R., Hashim U. Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments. J. Ind. Eng. Chem. 2014. 20: 1171.  https://doi.org/10.1016/j.jiec.2013.08.028

22. Boehm H.-P., Stumpp E. Citation errors concerning the first report on exfoliated graphite. Carbon. 2007. 45(7): 1381.  https://doi.org/10.1016/j.carbon.2006.12.016

23. Schafhaeutl C.About the connections of carbon with silicon, iron and other metals, which form the variousGallungen of basic iron and steel and wrought iron. J. Prakt. Chem. 1840. 21: 129. [in German].  https://doi.org/10.1002/prac.18400210117

24. Schafhaeutl C. On the combinations of carbon with silicon and iron, and other metals, forming the different species of cast iron, steel, and malleable iron. Philos. Mag. 1840. 16(106): 570. 

25. Liu Y., Yu D., Zeng C. Miao Z., Dai L. Biocompatible graphene oxide-based glucose biosensors. Langmuir. 2010. 26(9): 6158.  https://doi.org/10.1021/la100886x

26. Liu Y., Liu C., Liu Y. Investigation on fluorescence quenching of dyes by graphite oxide and graphene. Appl. Surf. Sci. 2011. 257(13): 5513. h ttp://dx.doi.org/10.1016/j.apsusc.2010.12.136

27. Pham T.A., Choi B.C., Lim K.T., Jeong Y.T. A simple approach for immobilization of gold nanoparticles on graphene oxide sheets by covalent bonding. Appl. Surf. Sci. 2011. 257(8): 3350.  https://doi.org/10.1016/j.apsusc.2010.11.023

28. Geim A.K., Novoselov K.S. The rise of graphene. Nat. Mater. 2007. 6: 183.  https://doi.org/10.1038/nmat1849

29. Park S., Ruoff R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009. 4: 217.  https://doi.org/10.1038/nnano.2009.58

30. Saranchuk V.I., Ilyashov M.O., Oshovskyy V.V., Beletsky V.S. Fundamentals of chemistry and physics of fossil fuels. (Donetsk: East Publishing House, 2008).[in Ukrainian].

31. Wissler M. Graphite and carbon powders for electrochemical applications. J. Power Sources. 2006. 156(2): 142.  https://doi.org/10.1016/j.jpowsour.2006.02.064

32. U.S. Patent 4094951. Ishikawa T., Kanemaru T., Teranishi H., Onishi K. Composites of oxidized graphite material and expanded graphite material. 1978. 

33. Kolbasov G.Ya., Danilov M.O., Slobodyanyuk I.A., Rusetskyy I.A. Sintez vosstanovlennogo oksida grafena iz mnogosloynykh uglerodnykh nanotrubok i yego yelektrokataliticheskiye svoystva. Ukr. Chem.. Zhurn. 2014. 80(7): 3. [in Russian].

34. Muradyan V.E., EzernitskayaM.G., SmirnovaV.I., KabaevaN.M., NovikovYu.N., Parnes Z.N., Vol’pin M.E. Russ. J. Gen. Chem. 1991. 61(12): 2626.

35. Li J.; Zeng X.; Ren T.; van der Heide E. The Preparation of Graphene Oxide and Its Derivatives and Their Application in Bio-Tribological Systems. Lubricants 2014. 2: 137.  https://doi.org/10.3390/lubricants2030137

36. Schniepp H.C., Li J.L., McAllister M.J., Sai H., Herrera-Alonso M., Adamson D.H., Prud'homme R.K., Car R., Saville D.A., Aksay I.A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B. 2006. 110(17): 8535. https://doi.org/10.1021/jp060936f 

37. Gomez-Navarro C., Weitz R.T., Bittner A.M., Scolari M., Mews A., Burghard M., Kern K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007. 7(11): 3499.  https://doi.org/10.1021/nl072090c

38. Eda G., Fanchini G., Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008. 3(5): 270. https://doi.org/10.1038/nnano.2008.83

39. Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., Wu Y., Nguyen S.B.T., Ruoff R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007. 45: 1558.  https://doi.org/10.1016/j.carbon.2007.02.034

40. Stankovich S., Dikin D.A., Dommett G.H., Kohlhaas K.M., Zimney E.J., Stach E.A., Piner R.D., Nguyen S.T., Ruoff R.S. Graphene-based composite materials. Nature. 2006. 442(7100): 282.   https://doi.org/10.1038/nature04969

41. Li D., Muller M.B., Gilje S., Kaner R.B., Wallace G.G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008. 3(2): 101.  https://doi.org/10.1038/nnano.2007.451

42. Li X., Wang X., Zhang L., Lee S., Dai H. Chemically derived, ultrasmooth graphene nanoribbon semicounductors. Science. 2008. 319: 1229.   https://doi.org/10.1126/science.1150878

43. Cai W., Piner R.D., Stadermann F.J.,Park S., Shaibat M.A., Ishii Y ., Yang D., Velamakanni A., An S.J., Stoller M ., An J., Chen D., Ruoff R.S. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science. 2008.  321(5897): 1815.  https://doi.org/10.1126/science.1162369

44. Hofmann V.U. Graphit und Graphitverbindungen. Ergebnisse der Exakten Naturwissenschaften. (Berlin:Verlag Von Julius Springer, 1939). [in German]. 

45. Hummers W.S., Offeman R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958. 80(6): 1339.  https://doi.org/10.1021/ja01539a017

46. Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A., Sun Z., Slesarev A., Alemany L.B., Lu W., Tour J.M. Improved Synthesis of Graphene Oxide. ACS Nano. 2010. 4(8): 4806.  https://doi.org/10.1021/nn1006368

47. Brodie B.C. On the atomic weight of graphite. Philos. Trans. R. Soc. London. 1859. 149: 249.  https://doi.org/10.1098/rstl.1859.0013

48. Staudenmaier L. Verfahren zur Darstellung der Graphitsäure. Ber. Dtsch. Chem. Ges. 1898. 31(2): 1481.  https://doi.org/10.1002/cber.18980310237

49. Shin Y-R., Jung S-M., Jeon I-Y., Baek J-B. The oxidation mechanism of highly ordered pyrolytic graphite in a nitric acid/sulfuric acid mixture. Carbon. 2013. 52: 493.  https://doi.org/10.1016/j.carbon.2012.10.001

50. Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010. 39(1): 228.  https://doi.org/10.1039/B917103G

51. Avdeev V.V., Monyakina L.A., Nikolskaya I.V., Sorokina N.E., Semenenko K.N. The choice of oxidizers for graphite hydrogenosulfate chemical synthesis. Carbon. 1992. 30(6): 819.  https://doi.org/10.1016/0008-6223(92)90001-D

52. Sorokina N.E., Khaskov M.A., Avdeev V.V., Nikol’skaya I.V. Reaction of graphite with sulfuric acid in the presence of KMnO4. Russ. J. Gen. Chem. 2005. 75(2): 162.  https://doi.org/10.1007/s11176-005-0191-4

53. Lakshminarayanan P.V., Toghiani H., Jr C.U.P. Nitric acid oxidation of vapor grown carbon nanofibers. Carbon. 2004. 42(12–13): 2433.  https://doi.org/10.1016/j.carbon.2004.04.040

54. Zhang N., Wang L.-Y., Liu H., Cai Q.-K. Nitric acid oxidation on carbon dispersion and suspension stability. Surf. Interface Anal. 2008. 40(8): 1190.  https://doi.org/10.1002/sia.2864

55. Cotton F.A., Wilkinson G., Murillo C.A., Bochmann M. Advanced Inorganic Chemistry. (Singapore: Wiley India, 2004).

56. Koch K.R. Oxidation by Mn2O7: An impressive demonstration of the powerful oxidizing property of dimanganeseheptoxide. J. Chem. Educ. 1982.  59(11): 973.  https://doi.org/10.1021/ed059p973.3

57. Simon A., Dronskowski R., Krebs B., Hettich B. The Crystal Structure of Mn2O7. Angew. Chem. Int. Ed. Engl. 1987. 26(2): 139.  https://doi.org/10.1002/anie.198701391

58. Tromel M., Russ M. Dimanganheptoxid for the selective oxidation of organic substrates. Angew. Chem. 1987. 99: 1037. [in German].  https://doi.org/10.1002/ange.19870991009

59. Wojtoniszak M., Mijowska E. Controlled oxidation of graphite to graphene oxide with novel oxidants in a bulk scale. J. Nanopart. Res. 2012. 14(11): 1248.  https://doi.org/10.1007/s11051-012-1248-z

60. US Patent 7824651. A. Zhamu, J. Shi, J. Guo, Β.Ζ. Jang. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets. 2010.

61. UA 71602 U. Posudiyevskiy A.U., Hazyeyeva O.A., Koshechko V.G., Pokhodenko V.D.Mechanochemical method for the preparation of grapheme oxide. 2011.

62. Guerrero-Contreras J., Caballero-Briones F. Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater. Chem. Phys. 2015. 153: 209.  https://doi.org/10.1016/j.matchemphys.2015.01.005

63. Kovtyukhova N.I., Ollivier P.J., Martin B.R. Mallouk T.E., Chizhik S.A., Buzaneva E.V., Gorchinskiy A.D. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 1999. 11(3): 771.  https://doi.org/10.1021/cm981085u

64. Ekiz O.Ö., Urel M., Güner H., Mizrak A. K., Dâna A. Reversible Electrical Reduction and Oxidation of Graphene Oxide. ACS Nano. 2011. 5(4): 2475.  https://doi.org/10.1021/nn1014215

65. Perets Yu.S., Vovchenko L.L., Matzui L.Yu., Serdyuk V.S. Receiving graphite nanoplatelets the method of ultrasonic dispersion. Bulletin of Taras Shevchenko National University of Kyiv. Series Physics & Mathematics. 2013. 1: 317. 

66. Brodie B.C. On the atomic weight of graphite. Philos. Trans. R. Soc. London. 1859. 149: 249.  https://doi.org/10.1098/rstl.1859.0013

67. Gao W.Graphite Oxide: Structure, Reduction and Applications. (Houston, Texas, 2012).

68. Hui W., Wei L., Jiao-jing S.,ChenZ., Ming-boW., Bao-huaL., Quan-hongY. pH-dependent size, surface chemistry and electrochemical properties of graphene oxide. New Carbon Materials. 2013.  28(5): 327.  https://doi.org/10.1016/S1872-5805(13)60085-2

69. Johnson J.A., Benmore C.J., Stankovich S., Ruoff R.S. A neutron diffraction study of nano-crystalline graphite oxide. Carbon. 2009. 47: 2239.  https://doi.org/10.1016/j.carbon.2009.04.016

70. Hofmann U., Holst R. Via the acid nature and methylation of graphitic. Monatsh. Chem. 1939. 72: 754. [in German].

71. Ruess G. About the graphitoxyhydroxyd (graphitic). Monatsh. Chem. 1946. 76: 381. [in German].  https://doi.org/10.1007/BF00898987

72. Lee D. W., De Los Santos V. L., Seo J. W., Felix L. L. Bustamante D. A., Cole J. M., Barnes C. H. W. The structure of graphite oxide: investigation of its surface chemical groups. J. Phys. Chem. B. 2010. 114(17): 5723.  https://doi.org/10.1021/jp1002275

73. Dubois M., Giraudet J., Guerin K. Hamwi A., Fawal Z., Pirotte P., Masin F. EPR and Solid-State NMR Studies of Poly(dicarbon monofluoride) (C2F)n. J. Phys. Chem. B. 2006. 110(24): 11800.  https://doi.org/10.1021/jp061291m

74. Scholz W., Boehm H.P. Investigations on graphite. VI. Considerations on the structure of graphite oxide. Russ. J. Inorg. Chem. 1969. 369(3–6): 327. [in German]. 

75. Nakajima T., Mabuchi A., Hagiwara R. A new structure model of graphite oxide. Carbon. 1988. 26(3): 357.

76. Nakajima T., Matsuo Y. Formation process and structure of graphite oxide.Carbon. 1994. 32(3): 469.  https://doi.org/10.1016/0008-6223(94)90168-6

77. He H., Klinowski J., Forster M., Lerf A. A new structural model for graphite oxide. Chem. Phys. Lett. 1998. 287: 53.  https://doi.org/10.1016/S0009-2614(98)00144-4

78. He H., Riedl T., Lerf A., Klinowski J. Solid-State NMR Studies of the Structure of Graphite Oxide. J. Phys. Chem. 1996. 100: 19954.  https://doi.org/10.1021/jp961563t

79. Szabo T., Berkesi O., Forgo P. Josepovits K., Sanakis Y., Petridis D., Dékány I. Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides. Chem. Mater. 2006. 18(11): 2740.  https://doi.org/10.1021/cm060258+

80. Lerf A., He H., Riedl T., Forster M., Klinowski J.13C and 1H MAS NMR studies of graphite oxide and its chemically modified derivatives. Solid State Ionics. 1997. 101: 857.  https://doi.org/10.1016/S0167-2738(97)00319-6

81. Drużbicki K., Natkaniec I. Inelastic Neutron Scattering of WaterRetained in Graphene Oxide. JINR News. 2014. 2: 12.

82. Left A. Storylines in intercalation chemistry. Dalton Trans. 2014. 43(27): 10276.  https://doi.org/10.1039/c4dt00203 

83. Buchsteiner A., Lerf A., Pieper J. Water dynamics in graphite oxide investigated with neutron scattering. J. Phys. Chem. B. 2006. 110(45): 22328.  https://doi.org/10.1021/jp0641132

84. Lerf A., Buchsteiner A., Pieper J.,Schottl S., Dekany I., Szabo T., Boehm H.P. Hydration behavior and dynamics of water molecules in graphite oxide. J. Phys. Chem. Solids. 2006. 67: 1106.  https://doi.org/10.1016/j.jpcs.2006.01.031

85. Boehm H.P., Scholz W.Considerations on the structure of graphite oxid. Z. Anorg. Allg. Chem. 1965. 335: 74. [in German].  https://doi.org/10.1002/zaac.19653350107

86. Hofmann U., Frenzel A., Csalan E. Justus Liebig's The Constitution of graphite acid and its reactions. Ann. Chem. 1934. 510(1): 1. [in German].  https://doi.org/10.1002/jlac.19345100102

87. Cai W., Piner R.D., Stadermann F.J., Park S., Shaibat M.A., Ishii Y., Yang D., Velamakanni A., An S.J., Stoller M., An J., Chen D., Ruoff R.S. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science. 2008. 321(5897): 1815.  https://doi.org/10.1126/science.1162369

88. Gao W., Alemany L.B., Ci L., Ajayan P.M. New insights into the structure and reduction of graphite oxide. Nat. Chem. 2009. 1: 403.  https://doi.org/10.1038/nchem.281

89. Szabo T., Berkesi O., Dekany I. DRIFT study of deuterium-exchanged graphite oxide. Carbon. 2005. 43(15): 3186.  https://doi.org/10.1016/j.carbon.2005.07.013

90. Szabo T., Tombacz E., Illes E., Dekany I. Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon. 2004. 44(3): 537.  https://doi.org/10.1016/j.carbon.2005.08.005

91. Boukhvalov D.W., Katsnelson M.I. Modeling of Graphite Oxide. J. Am. Chem. Soc. 2008. 130 (32): 10697.   https://doi.org/10.1016/j.carbon.2005.08.005

92. Rattana T., Chaiyakun S., Witit-anun N., Nuntawong N., Chindaudom P., Oaew S., Kedkeaw C., Limsuwan P. Preparation and characterization of graphene oxide nanosheets. Procedia Engineering. 2012. 32: 759.  https://doi.org/10.1016/j.proeng.2012.02.009

93. Saxena S., Tyson T.A., Negusse E. Investigation of the Local Structure of Graphene Oxide. J. Phys. Chem. Lett. 2010. 1: 3433.  https://doi.org/10.1021/jz1014339

94. Chiu C.-W., Huang T.-K., Wang Y.-C., Alamanib B.G., Lin J.-J. Intercalation strategies in clay/polymer hybrids. Prog. Polym. Sci. 2014. 39: 443.  https://doi.org/10.1016/j.progpolymsci.2013.07.002

95. Yan L., Zheng Y.B., Zhao F., Li S., Gao X., Xu B., Weiss P.S., Zhao Y. Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chem. Soc. Rev. 2012. 41(1): 97.  https://doi.org/10.1039/C1CS15193B

96. Zhao G., Li J., Ren X. Chen C., Wang X. Few-Layered Graphene Oxide Nanosheets As Superior Sorbents for Heavy Metal Ion Pollution Management. Environ. Sci. Technol. 2011. 45: 10454.  https://doi.org/10.1021/es203439v

97. Choi W., Lahiri I., Seelaboyina R., Kang Y.S. Synthesis of graphene and its applications: a review. Crit. Rev. Solid State. 2010. 35: 52.  https://doi.org/10.1080/10408430903505036

98. Guo S., Dong S. Graphene nanosheet: synthesis, molecular engineering, thinfilm, hybrids, and energy and analytical applications. Chem. Soc. Rev. 2011. 40: 2644.  https://doi.org/10.1039/c0cs00079e

99. Bai H., Li C., Shi G. Functional composite materials based on chemically converted graphene. Adv. Mater. 2011. 23(9): 1089.  https://doi.org/10.1002/adma.201003753

100. Li C., Shi G. Three-dimensional graphene architectures. Nanoscale . 2012. 4: 5549.  https://doi.org/10.1039/c2nr31467c

101. Mohan V.B., Brown R., Jayaraman K., Bhattacharyya D. Characterisation of reduced graphene oxide: Effects of reduction variables on electrical conductivity. Mater. Sci. Eng. B. 2015. 193: 49.  https://doi.org/10.1016/j.mseb.2014.11.002

102. Zeng Y., Zhou Y., Zhou T., Shi G. A novel composite of reduced graphene oxide and molecularlyimprinted polymer for electrochemical sensing 4-nitrophenol. Electrochim. Acta. 2014. 130: 504.  https://doi.org/10.1016/j.electacta.2014.02.130

103. Jiang R., Cui C., Ma H. Using graphene nanosheets as a conductive additive to enhance the capacitive performance of α-MnO2. Electrochim. Acta. 2013. 104: 198.  https://doi.org/10.1016/j.electacta.2013.04.125

104. Suresh D., Nethravathi P.C., Udayabhanu, Nagabhushana H., Sharma S.C. Spinach assisted green reduction of graphene oxide and its antioxidant and dye absorption properties. Ceram. Int. 2015. 41: 4810.  https://doi.org/10.1016/j.ceramint.2014.12.036

105. Roy E., Patra S., Kumar D., Madhuri R., Sharma P.K.Multifunctional magnetic reduced graphene oxide dendrites: Synthesis, characterization and their applications. Biosens. Bioelectron. 2015. 68: 726.  https://doi.org/10.1016/j.bios.2015.01.072

106. Ng A.M.H., Kenry, Lim C.T., Low H.Y., Loh K.P. Highly sensitive reduced graphene oxide microelectrode array sensor. Biosens. Bioelectron. 2015. 65: 265.  https://doi.org/10.1016/j.bios.2014.10.048

107. Cuong T.V., Pham V.H., Shin E.W., Chung J.S., Hur S.H., Kim E.J., Tran Q.T., Nguyen H.H., Kohl P.A. Temperature dependent photoluminescence from chemically and thermally reduced graphene oxide. Appl. Phys. Lett. 2011. 99: 041905.  https://doi.org/10.1063/1.3616142

108. Stroyuk A.L., Andryushina N.S., Shcherban N.D., Ilyin V.G.,Yefanov V.S., Yanchuk I.B., Kuchmy S.Ya., Pokhodenko V.D. Photochemical Reduction of Graphene Oxide in Colloidal Solution . Theor. Exp. Chem. 2012. 48(1): 2.  https://doi.org/10.1007/s11237-012-9235-0

109. Shulga Y.M., Baskakov S.A., Zolotarenko A.D., Kabachkov E.N., Muradyan V.E., Voylov D.N., Smirnov V.A., Martynenko V., Schur D.V., Pomytkin A.P.Staining nano graphene oxide sheets and the colored polymeric compositions based on them. Nanosystems, Nanomaterials, Nanotechnologies. 2013. 11(1): 161. [in Russian].

110. Papaianina O.S., Savoskin M.V., Vdovichenko A.N., Rodygin M.Yu., Kompanets M.A., Opeida I.O. Obtaining of graphene-like particles by reduction of graphite oxide. Him. Fiz. Tehnol. Poverhni.  2014. 5(2): 158. [in Russian].

111. Qu B., Ma Ch., Ji G., Xu Ch., Xu J., Meng Y.S., Wang T., Lee J.Y. Layered SnS2 – Reduced Graphene Oxide Composite – A High-Capacity, High-Rate, and Long-Cycle Life Sodium-Ion Battery Anode Material. Adv. Mater. 2014. 26: 3854.  https://doi.org/10.1002/adma.201306314

112. Zhao Y., Li X., Yan B. Li D., Lawes S., Sun X. Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: A review. J. Power Sources. 2015. 274: 869.  https://doi.org/10.1016/j.jpowsour.2014.10.008

113. Li S.-M., Yang S.-Y, Wang Y.-S., Tsai H.-P., Tien H.-W.,Hsiao S.-T., Liao W.-H., Chang Ch.-L., Ma Ch.-Ch.M.,Hu Ch.-Ch. N-doped structures and surface functional groups of reduced graphene oxide and their effect on the electrochemical performance of supercapacitor with organic electrolyte. J. Power Sources. 2015. 278: 218.  https://doi.org/10.1016/j.jpowsour.2014.12.025

114. Kuila T., Bose S., Mishra A.K. Khanra P.,Kim N.H., Lee J.H. Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 2012. 57: 1061.  https://doi.org/10.1016/j.pmatsci.2012.03.002

115. Bousquet A., Awada H., Hiorns R.C., Dagron-Lartigau Ch., Billon L. Conjugated-polymer grafting on inorganic and organicsubstrates: A new trend in organic electronic materials. Prog. Polym. Sci. 2014. 39: 1847.  https://doi.org/10.1016/j.progpolymsci.2014.03.003

116. Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010. 39: 228.  https://doi.org/10.1039/B917103G

117. Nie L., Liu C., Wang J., Shuai Y., Cui X., LiuL. College. Effects of surface functionalized graphene oxide on the behavior ofsodium alginate. Carbohydr. Polym. 2015. 117: 616.  https://doi.org/10.1016/j.carbpol.2014.08.104

118. Jiao N., Chaoyu H., Zhou P., Zhang C.X., Xiao H.P., Sun L.Z. Surface work function of chemically derived graphene: A first –principles study. Phys. Lett. A. 2013. 377: 1760.  https://doi.org/10.1016/j.physleta.2013.05.005

119. Nardecchia S., Carriazo D., Ferrer M.L. Gutierrez M.C., del Monte F. Threedimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem. Soc. Rev. 2013. 42: 794.  https://doi.org/10.1039/C2CS35353A

120. Scida K., Stege P.W., Haby G., Messina G.A., García C.D. Recent applicationsof carbon-based nanomaterials in analytical chemistry: critical review. Anal. Chim. Acta. 2011. 691(1–2): 6.  https://doi.org/10.1016/j.aca.2011.02.025

121. Tsou Ch.-H., An Q.-F., Lo S.-Ch.,De Guzman M., Hung W.-S., Hu Ch.-Ch., Lee K.-R., LaiJ.-Y. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. J. Membr. Sci. 2015. 477: 93.  https://doi.org/10.1016/j.memsci.2014.12.039

122. Sun P., Zhu M., Wang K., Zhong M.,Wei J.,Wu D.,Xu Z.,Zhu H. Selective Ion Penetration of Graphene Oxide Membranes. ACS Nano. 2012. 7(1): 428.  https://doi.org/10.1021/nn304471w

123. Mahmoud K.A., Mansoor B., Mansour A., Khraisheh M. Functional graphene nanosheets: The next generation membranes for water desalination. Desalination. 2015. 356: 208.  https://doi.org/10.1016/j.desal.2014.10.022

124. Zhu Y., Murali S., Cai W., Li X., Suk J.W., Potts J. R.,Ruoff R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010. 22(35): 3906.  https://doi.org/10.1002/adma.201001068

125. Madadrang C.J., Kim H.Y., Gao G., Wang N., Zhu J., Feng H., Gorring M., Kasner M.L., Hou S. Adsorption behavior of EDTA-graphene oxide for Pb(II) removal. ACS Appl. Mater. Interfaces. 2012. 4: 1186.  https://doi.org/10.1021/am201645g

126. Gadipelli S., Guo Z.X. Graphene-based materials: Synthesis and gas sorption, storage and separation. Prog. Mater. Sci. 2015. 69: 1.  https://doi.org/10.1016/j.pmatsci.2014.10.004

127. Gulbakan B., Yasun E., Shukoor M.I., Zhu Z., You M., TanX., Sanchez H., Powell D.H., Dai H., Tan W. A dual platform for selective analyte enrichment and ionization in mass spectrometry using aptamer-conjugated graphene oxide. J. Am. Chem. Soc. 2010. 132(49): 17408.  https://doi.org/10.1021/ja109042w

128. Liu Q., Shi J., Sun J., Wang T., Zeng L., Jiang G. Graphene and graphene oxide sheets supported on silica as versatile and high-performance adsorbents forsolid-phase extraction. Angew. Chem. Int. Ed. 2011. 123(26): 6035.  https://doi.org/10.1002/ange.201007138

129. Zhou M., Luo L.L., Zhong S.X., Yang J. Y., Chen J. R. Progress of graphene-based composites for adsorption of pollutants in wastewater. Appl. Mech. Mater. 2014. 455: 7.  https://doi.org/10.4028/www.scientific.net/AMM.455.7

130. Wang H., Yuan X., Wu Y., Huang H., Peng X., Zeng G., Zhong H., Liang J., Ren M.M. Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogenstorage/generation. Adv. Colloid Interface Sci. 2013. 195–196: 19.  https://doi.org/10.1016/j.cis.2013.03.009

131. Wang X., Liu B., Lu Q., Qu Q. Graphene-based materials: Fabrication and application for adsorption in analytical chemistry Review. J. Chromatogr. A. 2014. 1362: 1.  https://doi.org/10.1016/j.chroma.2014.08.023

132. Liu M., Chen C., Hu J., Wu X., Wang X. Synthesis of magnetite/graphene oxidecomposite and application for cobalt(II) removal. J. Phys. Chem. C. 2011. 115: 25234.  https://doi.org/10.1021/jp208575m

133. Patent UA 78047.Danilov M.A., Slobodianiuk I.O., Rusetsky I.A., Kolbasov G.Y. Oxygenelectrodeforcurrentsources based on reduced graphene oxide. 2013. 

134. Mai Y.-W., Yu Z.-Z. Polymer nanocomposites.(CRC Press Boca Raton, Boston, New York, Washington, DC, 2006).  https://doi.org/10.1533/9781845691127

135. Huang X., Yin Z., Wu S., Qi X., He Q., Zhang Q., Yan Q., Boey F., Zhang H. Graphene-based materials: synthesis, characterization, properties, and applications. Small. 2011. 7(14): 1876.  https://doi.org/10.1002/smll.201002009

136. Huang X., Qi X., Boey F., Zhang H. Graphene-based composites. Critical Review. Chem. Soc.Rev. 2012. 41: 666.  https://doi.org/10.1039/C1CS15078B

137. Mensing J.Ph., Wisitsoraat A., Phokharatkul D., Lomas T., TuantranontA. Novel surfactant-stabilized graphene-polyaniline composite nanofibers for supercapacitor applications. Composites B. 2015. 77: 93.  https://doi.org/10.1016/j.compositesb.2015.03.004

138. Geng Y., Wang S.J., Kim J.K. Preparation of graphite nanoplatelets and graphene sheets. J. Colloid. Interface. Sci. 2009. 336: 592.  https://doi.org/10.1016/j.jcis.2009.04.005

139. Sorokin P.B.Theoretical studies of the physicochemical properties of low-dimensional structures. Doctoral (Phys.) Thesis. (Moscow. 2014). [in Russian].

140. Chakrabarti M.H., Low C.T.J., Brandon N.P., Yufit V., Hashim M.A., Irfan M.F., Akhtar J., Ruiz-Trejo E., Hussain M.A. Progress in the electrochemical modification of graphene-basedmaterials and their applications. Electrochim. Acta. 2013. 107: 425.  https://doi.org/10.1016/j.electacta.2013.06.030

141. Wei T., Luo G., Fan Z., Zheng Ch., Yan J., Yao Ch., Li W., Zhang Ch. Preparation of graphene nanosheet/polymer composites using in situreduction-extractive dispersion. Carbon. 2009. 47(9): 2290. https://doi.org/10.1016/j.carbon.2009.04.030

142. Hummers J.W.S., Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958. 80(6): 1339.   https://doi.org/10.1021/ja01539a017

143. Das S., Nayak G.C., Sahu S.K., Oraon R. Development of FeCoB/GrapheneOxide based microwave absorbing materials for X-Band region. J. Magn. Magn. Mater. 2015. 384: 224. https://doi.org/10.1016/j.jmmm.2015.01.079

144. Jahan M., Bao Q., Yang J.-X., Loh K.P. Structure-Directing Role of Graphene in the Synthesis of Metal-Organic Framework Nanowire. J. Am. Chem. Soc. 2010. 132: 14487.  https://doi.org/10.1021/ja105089w

145. Cao S.-Y., Chen Ch.-S., Liu T.-G., Tsang Y.-h, Chen W.-W. Polymer-assisted UV excitation method to synthesize reduced graphene oxide/α-Bi2Mo3O12 nanoplates with high activity. J. Environ. Chem. Eng. 2014. 2: 2103.  https://doi.org/10.1016/j.jece.2014.08.025

146. Liu Y., Xie B., Zhangb Z., Zheng Q., Xu Z. Mechanical Properties of Graphene Papers. J. Mech. Phys. Solids. 2012. 60: 591.  https://doi.org/10.1016/j.jmps.2012.01.002

147. Compton O.C., Cranford S.W., Putz K.W., An Z., Brinson L.C., Buehler M.J., Nguyen S.B.T. Tuning the Mechanical Properties of Graphene Oxide Paper and Its Associated Polymer Nanocomposites by Controlling Cooperative Intersheet Hydrogen Bonding. ASC Nano. 2012. 6: 2008.  https://doi.org/10.1021/nn202928w

148. Medhekar N.V., Ramasubramaniam A., Ruoff R.S., Shenoy V.B. Hydrogen Bond Networks in Graphene Oxide Composite Paper: Structure and Mechanical Properties. ACS Nano. 2010. 4(4): 2300.  https://doi.org/10.1021/nn901934u

149. Aleksandrov G.N., Kapitonov A.N. Investigation of properties of graphene oxide paper produced from an aqueous suspension of graphene oxide. Innovative Science and Modern Society. 2013. 1: 3. [in Russian]. 

150. Eda G., Chhowalla M. Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film. Optoelectronics Adv. Mater. 2010. 22: 2392.  https://doi.org/10.1002/adma.200903689

151. Kovtyukhova N.I., Ollivier P.J., Martin B.R., Mallouk T.E.,. Chizhik S.A,. Buzaneva E.V., Gorchinskiy A.D. Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. Chem. Mater. 1999. 11: 771.  https://doi.org/10.1021/cm981085u

152. Zheng Q., Li Z., Yang J., Kim .J.-K. Graphene oxide-based transparent conductive films. Prog. Mater. Sci. 2014. 64: 200.  https://doi.org/10.1016/j.pmatsci.2014.03.004

153. Ray S.C., Bhunia S.K., Saha A., Jana N.R. Electric And Ferro-Electric Behaviour Of Polymer-Coated Graphene-Oxide Thin Film. Physics Procedia. 2013. 46: 62.  https://doi.org/10.1016/j.phpro.2013.07.046

154. Ioni Y.V., Tkachev S.V. Use of a composite nanoparticle Rh on surface modified graphene oxide as a catalyst in the hydroformylation reaction. In: Proc. XI Int. Youth Sci. Conf.  (Moscow, 2013). P. 34.  [in Russian]. 

155. Li Z., He M., Xu D., Liu Z. Graphene materials-based energy acceptor systems and sensors. J. Photochem. Photobiol. C. 2014. 18: 1.  https://doi.org/10.1016/j.jphotochemrev.2013.10.002

156. Basu S., Bhattacharyya P. Recent developments on graphene and grapheneoxide based solid state gas sensors. Sens. Actuators B. 2012. 173: 1.  https://doi.org/10.1016/j.snb.2012.07.092

157. Liu Y., Dong X., Chen P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 2012. 41: 2283.  https://doi.org/10.1039/C1CS15270J

158. Yavari F., Koratkar N. Graphene-based chemical sensors. J. Phys. Chem. Lett. 2012. 3(13): 1746.  https://doi.org/10.1021/jz300358t

159. Jing Z., Yu Z.G., Xia S.D. Review of graphene-based strain sensors. Chin. Phys. B. 2013. 22(5): 057701.  https://doi.org/10.1088/1674-1056/22/5/057701

160. Llobet E. Gas sensors using carbon nanomaterials: a review. Sens. Actuators B. 2013. 179: 32.  https://doi.org/10.1016/j.snb.2012.11.014

161. Ma H., Wu D., Cui Z., Li Y., Zhang Y., Du B., Wei Q. Graphene-based optical and electrochemical biosensors: a review. Anal. Lett. 2013. 46(1): 1.  https://doi.org/10.1080/00032719.2012.706850

162. Chen C., Xie Q., Yang D., Xiao H., Fu Y., Tan Y., Yao S. Recent advances in electrochemical glucose biosensors: a review. RSC Adv. 2013. 3(14): 4473.  https://doi.org/10.1039/c2ra22351a

163. Lu G., Park S., Yu K., Ruoff R.S., Ocola L.E., Rosenmann D., Chen J. Gas Sensing with Highly Reduced Graphene Oxide: A New Signal Processing Method To Circumvent Run-to-Run and Device-to-Device Variations. ACS Nano. 2011. 5(2): 1154.  https://doi.org/10.1021/nn102803q

164. Hantel M.M. Graphite Oxide and Graphene Oxide Based Electrode Materials for Electrochemical Double Layer Capacitors: A dissertation submitted to ETH Zurich 2013. Diss. ETH No. 21212. 

165. Jeong H.T., Kim B.C., Higgins M.J., Wallace G.G. Highly stretchable reduced graphene oxide (rGO)/single-walled carbon nanotubes (SWNTs) electrodes for energy storage devices. Electrochim. Acta. 2015. 163: 149.  https://doi.org/10.1016/j.electacta.2015.02.022

166. Yan G.-C., Li X.-H., Wang Z.-X., Guo H. J., Zhang Q., Peng W. J. Synthesis of Cu2O/reduced graphene oxide composites as anode materials for lithium ion batteries. Trans. Nonferrous Met. Soc. China. 2013. 23(12): 3691. https://doi.org/10.1016/S1003-6326(13)62918-0

167. Yoni Yu.V., Lyubimov S.E., Korlyukov A.A., Antipin M.Yu., Davankov V.A., Gubin S.P. Activity of palladium nanoparticles supported on graphene oxide in a reaction of Suzuki – Miyaura. Russ. Chem. Bull. 2012. 9: 1810. 

168. Yoni Yu.V. Nanochastitsy blagorodnykh metallov (Au, Pd, Rh) na poverkhnosti cheshui grafena: polucheniye, stroyeniye, svoystva i kataliticheskaya aktivnost. Ph.D (Chem.) Thesis. (Moscow. 2013). [in Russian].

169. Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010. 39: 228.  https://doi.org/10.1016/S1003-6326(13)62918-0

170. Zhou X., Shi T., Wu J., Zhou H. (0 0 1) Facet-exposed anatase-phase TiO2 nanotube hybrid reducedgraphene oxide composite: Synthesis, characterization andapplication in photocatalytic degradation. Appl. Surf. Sci. 2013. 287: 359.  https://doi.org/10.1016/j.apsusc.2013.09.156

171. Bhimanapati G.R.Graphene oxide supported ruthenium for co methanation. Energy and mineral engineering. 2013. 123.

172. Chung C., Kim Y.-K., Shin D. Ryoo S.-R., Hong B.H., Min D.-H. Biomedical Applications of Graphene and Graphene Oxide. Acc. Chem. Res. 2013. 46(10): 2211.

173. Tyagi M.G., Albert A.P., Tyagi V., Hema R. Graphene nanomaterials and applications in bio-medical sciences world. J. Pharm. Pharm. Sci. 2013. 3(1): 339.

174. Wang Y., Li Z., Wang J., Li J., Lin Y. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in Biotechnology. 2011. 29(5): 205.  https://doi.org/10.1016/j.tibtech.2011.01.008

175. Stengl V., Bakardjieva S., Henych J., Lang K., Kormunda M. Blue and green luminescence of reduced graphene oxide quantum dots. Carbon. 2013. 63: 537.  https://doi.org/10.1016/j.tibtech.2011.01.008

176. Zhu Z., Garcia-Gancedo L., Flewitt A.J., Xie H., Moussy F., Milne W. I. A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors. 2012. 12(5): 5996.  https://doi.org/10.1016/j.tibtech.2011.01.008

177. Ulberg Z.R., Gorchakova N.A.,Chekman I.S.Biomimeticsand biomimetic materials:medico-social aspect. Ukrainian Medical Journal. 2013. 3(95): 35. [in Ukrainian].

178. Cheng C., Li S., Zhao J., Li X., Liu Z., Ma L., Zhang X., Sun S., Zhao C. Biomimetic assembly of polydopamine-layer on graphene: Mechanisms, versatile 2D and 3D architectures and pollutant disposal. Chem. Eng. J. 2013. 228: 468.  https://doi.org/10.1016/j.cej.2013.05.01 

179. Zhang P., Wang Y., Leng F., XiongZ.H., HuangCh.Z. Highly selective and sensitive detection of coralyne based on the binding chemistry of aptamer and graphene oxide. Talanta. 2013. 112: 117.  https://doi.org/10.1016/j.talanta.2013.03.013

180. Baradaran S., Moghaddam E., Basirun W.J., Mehrali M., Sookhakian M., Hamdi M., Moghaddam M.R.N., Alias Y. Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite. Carbon. 2014. 69: 32.  https://doi.org/10.1016/j.carbon.2013.11.054

181. Shao Y., Wang J., Wu H., Liu J., Aksay I.A., Lin Y. Graphene based electrochemical sensors and biosensors: a review. Electroanalysis. 2010. 22(10): 1027.   https://doi.org/10.1002/elan.200900571

182. Pumera M., Ambrosi A., Bonanni A., Chng E.L.K., Poh H.L. Graphene for electrochemical sensing and biosensing. Trends Anal. Chem. 2010. 29(9): 954.  https://doi.org/10.1016/j.trac.2010.05.011

183. Chowdhury R., Adhikari S., Rees P., Wilks S.P., Scarpa F. Graphene-based biosensor using transport properties. Phys. Rev. B. 2011. 83(4): 045401.  https://doi.org/10.1103/PhysRevB.83.045401

184. Wang Y., Shao Y., Matson D.W., Li J., Lin Y. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano. 2010. 4(4): 1790.  https://doi.org/10.1021/nn100315s

185. Liu S., Zeng T.H., Hofmann M., Burcombe E., Wei J., Jiang R., Kong J., Chen Y. Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. ACS Nano. 2011. 5(9): 6971.  https://doi.org/10.1021/nn202451x

186. Bitounis D., Ali-Boucetta H., Hong B.H., Min D.H., Kostarelos K. Prospects and challenges of graphene in biomedical applications. Adv. Mater. 2013. 25(16): 2258.  https://doi.org/10.1002/adma.201203700

187. Yang K., Wan J., Zhang S., Zhang Y., Lee S.T., Liu Z. In vivo pharmacokinetics, longterm biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano. 2011. 5(1): 516.  https://doi.org/10.1021/nn1024303

188. Kuila T., Bose S., Khanra P., Mishra A.K., Kim N.H., Lee J. H. Recent advances in graphene-based biosensors. Biosens. Bioelectron. 2011. 26(12): 4637.  https://doi.org/10.1016/j.bios.2011.05.039

189. Liu J., Cui L., Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery. Appl. Acta Biomater. 2013. 9: 9243.  https://doi.org/10.1016/j.actbio.2013.08.016

190. Zhang W., Guo Z., Huang D., Liu Z., Guo X., Zhong H. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials. 2011. 32(33): 8555.  https://doi.org/10.1016/j.biomaterials.2011.07.071

191. Chen G.-Y., Meng C.-L., Lin K.-C., Tuan H.-Y., Yang H.-J., Chen Ch.-L., Li K.-Ch, Chiang Ch.-S., Hu Yu-Ch. Graphene oxide as a chemosensitizer: Diverted autophagic flux, enhanced nuclear import, elevated necrosis and improved antitumor effects. Biomaterials. 2015. 40: 12.  https://doi.org/10.1016/j.biomaterials.2014.11.034

192. Eda G., Lin Y.Y., Mattevi C., Yamaguchi H., Chen H.A., Chen I.S., Chen Ch.-W., Chhowalla M. Blue Photoluminescence from Chemically Derived Graphene Oxide. Adv. Mater. 2010. 22(4): 505.  https://doi.org/10.1016/j.biomaterials.2014.11.034

193. Lin L., Rong M., Luo F., Chen D., Wang Y., Chen X. Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. Trends Anal. Chem. 2014. 54: 83.  https://doi.org/10.1016/j.trac.2013.11.001

194. Li J.-L., Tang B., Yuan B., Sun L., Wang X.-G. A review of optical imaging and therapy using nanosized graphene and graphene oxide. Biomaterials. 2013. 34: 9519.  https://doi.org/10.1016/j.biomaterials.2013.08.066

195. Sun X., Liu Z., Welsher K., Robinson J. T., Goodwin A., Zaric S., Dai H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008. 1(3): 203.  https://doi.org/10.1007/s12274-008-8021-8

196. Jing X., Mi H.-Y., Salick M.R., Cordie T.M., Peng X.-F., Turng L.-S. Electrospinning thermoplastic polyurethane/graphene oxide scaffolds for small diameter vascular graft applications. Mater. Sci. Eng. C. 2015. 49: 40.  https://doi.org/10.1016/j.msec.2014.12.060

197. Lin J., Zhang P., Zheng C., Wu X,, Mao T., Zhu M., Wang H., Feng D., Qian S., Cai X. Reduced silanized graphene oxide/epoxy-polyurethane compositeswith enhanced thermal and mechanical properties. Appl. Surf. Sci. 2014. 316: 114.  https://doi.org/10.1016/j.apsusc.2014.07.058

198. Zhao S., Wang Q., Zhao Y., Rui Q., Wang D. Toxicity and translocation of graphene oxide in Arabidopsis thaliana. Environ. Toxicol. Pharmacol. 2015. 39: 145.  https://doi.org/10.1016/j.etap.2014.11.014

199. Singh S.K., Singh M.K., Kulkarni P.P., Sonkar V.K., Gracio J.J.A., Dash D. Amine-modified graphene: thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano. 2012. 6(3): 2731.  https://doi.org/10.1021/nn300172t

200. Krishnan D., Kim F., Luo J., Cruz-Silva R., Cote L.J., Jang H. D., Huang J. Energetic graphene oxide: Challenges and opportunities. Nano Today. 2012. 7: 137.  https://doi.org/10.1016/j.nantod.2012.02.003




DOI: https://doi.org/10.15407/hftp06.04.413

Copyright (©) 2015 N. A. Havryliuk, E. N. Shevchuk, G. P. Prikhod’ko, M. T. Kartel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.